Search results for: Silvana Gjyli
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Silvana Gjyli

3 Microbiological Contamination of Outdoor Air in Marine Durres's Harbour, Albania

Authors: Laura Gjyli, Pirro Prifti, Lindita Mukli, Silvana Gjyli, Irida Ikonomi, Jerina Kolitari

Abstract:

Microbial air contamination of the outdoor air in Marine Durres-s Harbour (Durres, Albania) was estimated by sedimentation technique in August-October 2008. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonian Beach (AB). The aim of this study was to measure the number of aerobic plate count (mesophilic aerobic bacteria) and fungi (yeasts and molds) in the outdoor air in these areas. The number of colonies that were formed determines the number of cells at the moment in the outdoor air; respectively the number of mesophilic aerobic bacteria and yeasts and molds. The measure of bacteria and fungi used is CFU (Colony Forming Units) per Petri dish. It is said that marine harbours are very polluted areas. The aim of study was the definition of mesophilic aerobic bacteria and yeasts and molds number, and the comparison of microorganisms number in air sampling areas.

Keywords: Air microbiology, colony forming units, Marine Durres's Harbour, mesophilic aerobic bacteria, outdoor air, yeasts and molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
2 Effects of a Nectandra Membranacea Extract on Labeling of Blood Constituents with Technetium-99m and on the Morphology of Red Blood Cells

Authors: Silvana R.F. Moreno, Jorge J. Carvalho, Ana L. Nascimento, Mario Pereira, Luiz Q. A. Caldas, Mário Bernardo-Filho

Abstract:

The aim of this in vitro study was to evaluate the possible interference of a Nectandra membranacea extract (i) on the labeling of blood cells (BC), (ii) on the labeling process of BC and plasma (P) proteins with technetium-99m (Tc-99m) and (iii) on the morphology of red blood cells (RBC). Blood samples were incubated with a Nectandra membranacea crude extract, stannous chloride, Tc- 99m (sodium pertechnetate) was added, and soluble (SF) and insoluble (IF) fractions were isolated. Morphometry studies were performed with blood samples incubated with Nectandra membranacea extract. The results show that the Nectandra membranacea extract does not promote significant alteration of the labeling of BC, IF-P and IF-BC. The Nectandra membranacea extract was able to alter the erythrocyte membrane morphology, but these morphological changes were not capable to interfere on the labeling of blood constituents with Tc-99m.

Keywords: in vitro study, Nectandra membranacea, red bloodcell, technetium-99m

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
1 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535