Search results for: S. Pramanik
4 The Diameter of an Interval Graph is Twice of its Radius
Authors: Tarasankar Pramanik, Sukumar Mondal, Madhumangal Pal
Abstract:
In an interval graph G = (V,E) the distance between two vertices u, v is de£ned as the smallest number of edges in a path joining u and v. The eccentricity of a vertex v is the maximum among distances from all other vertices of V . The diameter (δ) and radius (ρ) of the graph G is respectively the maximum and minimum among all the eccentricities of G. The center of the graph G is the set C(G) of vertices with eccentricity ρ. In this context our aim is to establish the relation ρ = δ 2 for an interval graph and to determine the center of it.
Keywords: Interval graph, interval tree, radius, center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16433 Towards An Integrated Model for Academia- Industry Interface in India
Authors: Vinay K. Nangia, Cashmira Pramanik
Abstract:
Academia-industry relationship is not like that of technology donator-acceptor, but is of interactive and collaborative nature, acknowledging and ensuring mutual respect for each other-s role and contributions with an eye to attaining the true purpose of such relationships, namely, bringing about research-outcome synergy. Indeed, academia-industry interactions are a system that requires active and collaborative participations of all the stakeholders. This paper examines various issues associated with academic institutions and industry collaboration with special attention to the nature of resources and potentialities of stakeholders in the context of knowledge management. This paper also explores the barriers of academia-industry interaction. It identifies potential areas where industry-s participation with academia would be most effective for synergism. Lastly, this paper proposes an integrated model of several new collaborative approaches that are possible, mainly in the Indian scenario to strengthen academia-industry interface.Keywords: academia-industry, interface, knowledge economy, technology transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61922 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India
Authors: S. Pramanik
Abstract:
Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana— a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).
Keywords: Hindu Temple Architecture, Point Isovist, space syntax analysis, visibility graph analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen
Abstract:
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.
Keywords: Contact angle, contact angle hysteresis, contact time, superhydrophobic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406