Search results for: Ryohei Nakatsu
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Search results for: Ryohei Nakatsu

8 Magnetic Field Based Near Surface Haptic and Pointing Interface

Authors: Kasun Karunanayaka, Sanath Siriwardana, Chamari Edirisinghe, Ryohei Nakatsu, PonnampalamGopalakrishnakone

Abstract:

In this paper, we are presenting a new type of pointing interface for computers which provides mouse functionalities with near surface haptic feedback. Further, it can be configured as a haptic display where users may feel the basic geometrical shapes in the GUI by moving the finger on top of the device surface. These functionalities are achieved by tracking three dimensional positions of the neodymium magnet using Hall Effect sensors grid and generating like polarity haptic feedback using an electromagnet array. This interface brings the haptic sensations to the 3D space where previously it is felt only on top of the buttons of the haptic mouse implementations.

Keywords: Pointing interface, near surface haptic feedback, tactile display, tangible user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
7 Discovery of Sequential Patterns Based On Constraint Patterns

Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara

Abstract:

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
6 Analysis of Textual Data Based On Multiple 2-Class Classification Models

Authors: Shigeaki Sakurai, Ryohei Orihara

Abstract:

This paper proposes a new method for analyzing textual data. The method deals with items of textual data, where each item is described based on various viewpoints. The method acquires 2- class classification models of the viewpoints by applying an inductive learning method to items with multiple viewpoints. The method infers whether the viewpoints are assigned to the new items or not by using the models. The method extracts expressions from the new items classified into the viewpoints and extracts characteristic expressions corresponding to the viewpoints by comparing the frequency of expressions among the viewpoints. This paper also applies the method to questionnaire data given by guests at a hotel and verifies its effect through numerical experiments.

Keywords: Text mining, Multiple viewpoints, Differential analysis, Questionnaire data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
5 Impovement of a Label Extraction Method for a Risk Search System

Authors: Shigeaki Sakurai, Ryohei Orihara

Abstract:

This paper proposes an improvement method of classification efficiency in a classification model. The model is used in a risk search system and extracts specific labels from articles posted at bulletin board sites. The system can analyze the important discussions composed of the articles. The improvement method introduces ensemble learning methods that use multiple classification models. Also, it introduces expressions related to the specific labels into generation of word vectors. The paper applies the improvement method to articles collected from three bulletin board sites selected by users and verifies the effectiveness of the improvement method.

Keywords: Text mining, Risk search system, Corporate reputation, Bulletin board site, Ensemble learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
4 Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics

Authors: Eiko Takaoka, Ryohei Takahashi, Takashi Toyoda

Abstract:

We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.

Keywords: Digital meteorological equipments, PV, photovoltaic, irradiation, PTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
3 A Sequential Pattern Mining Method Based On Sequential Interestingness

Authors: Shigeaki Sakurai, Youichi Kitahara, Ryohei Orihara

Abstract:

Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge from the patterns. The paper proposes a new criterion, namely, the sequential interestingness, to discover sequential patterns that are more attractive for the analysts. The paper shows that the criterion satisfies the Apriori property and how the criterion is related to the support. Also, the paper proposes an efficient sequential mining method based on the proposed criterion. Lastly, the paper shows the effectiveness of the proposed method by applying the method to two kinds of sequential data.

Keywords: Sequential mining, Support, Confidence, Apriori property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
2 BECOME: Body Experience-Based Co-Operation between Juveniles through Mutually Excited Team Gameplay

Authors: Tsugunosuke Sakai, Haruya Tamaki, Ryuichi Yoshida, Ryohei Egusa, Etsuji Yamaguchi, Shigenori Inagaki, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi

Abstract:

We aim to develop a full-body interaction game that could let children cooperate and interact with other children in small groups. As the first step for our aim, the objective of the full-body interaction game developed in this study is to make interaction between children. The game requires two children to jump together with the same timing. We let children experience the game and answer the questionnaires. The children using several strategies to coordinate the timing of their jumps were observed. These included shouting time, watching each other, and jumping in a constant rhythm as if they were skipping rope. In this manner, we observed the children playing the game while cooperating with each other. The results of a questionnaire to evaluate the proposed interactive game indicate that the jumping game was a very enjoyable experience in which the participants could immerse themselves. Therefore, the game enabled children to experience cooperation with others by using body movements.

Keywords: Children, cooperation, full-body interaction game, kinect sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
1 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data

Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara

Abstract:

This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.

Keywords: Text mining, sequential mining, time constraints, daily business reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487