Search results for: Ruggiero Lovreglio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Ruggiero Lovreglio

3 An Immersive Serious Game for Firefighting and Evacuation Training in Healthcare Facilities

Authors: Anass Rahouti, Guillaume Salze, Ruggiero Lovreglio, Sélim Datoussaïd

Abstract:

In healthcare facilities, training the staff for firefighting and evacuation in real buildings is very challenging due to the presence of a vulnerable population in such an environment. In a standard environment, traditional approaches, such as fire drills, are often used to train the occupants and provide them with information about fire safety procedures. However, those traditional approaches may be inappropriate for a vulnerable population and can be inefficient from an educational viewpoint as it is impossible to expose the occupants to scenarios similar to a real emergency. Immersive serious games could be used as an alternative to traditional approaches to overcome their limitations. Serious games are already being used in different safety domains such as fires, earthquakes and terror attacks for several building types (e.g., office buildings, train stations, tunnels, etc.). In this study, we developed an immersive serious game to improve the fire safety skills of staff in healthcare facilities. An accurate representation of the healthcare environment was built in Unity3D by including visual and audio stimuli inspired from those employed in commercial action games. The serious game is organised in three levels. In each of them, the trainee is presented with a specific fire emergency and s/he can perform protective actions (e.g., firefighting, helping non-ambulant occupants, etc.) or s/he can ignore the opportunity for action and continue the evacuation. In this paper, we describe all the steps required to develop such a prototype, as well as the key questions that need to be answered, to develop a serious game for firefighting and evacuation in healthcare facilities.

Keywords: Fire Safety, healthcare, serious game, training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
2 Networked Radar System to Increase Safety of Urban Railroad Crossing

Authors: S. Saponara, L. Fanucci, R. Cassettari, P. Ruggiero, M. Righetto

Abstract:

The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.

Keywords: Radar for safe mobility, railroad crossing, railway, transport safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090
1 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria

Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero

Abstract:

Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.

Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840