Search results for: Roberta Maisano
7 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10266 F-IVT Actuation System to Power Artificial Knee Joint
Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo
Abstract:
The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.Keywords: Active orthoses, actuators, lower extremity exoskeletons, knee joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24575 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil
Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro
Abstract:
The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.
Keywords: Biodegradation, cellulose acetate, DMA, simulated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7744 A Positioning Matrix to Assess and to Develop CSR Strategies
Authors: Armando Calabrese, Roberta Costa, Tamara Menichini, Francesco Rosati
Abstract:
A company CSR commitment, as stated in its Social Report is, actually, perceived by its stakeholders?And in what measure? Moreover, are stakeholders satisfied with the company CSR efforts? Indeed, business returns from Corporate Social Responsibility (CSR) practices, such as company reputation and customer loyalty, depend heavily on how stakeholders perceive the company social conduct. In this paper, we propose a methodology to assess a company CSR commitment based on Global Reporting Initiative (GRI) indicators, Content Analysis and a CSR positioning matrix. We evaluate three aspects of CSR: the company commitment disclosed through its Social Report; the company commitment perceived by its stakeholders; the CSR commitment that stakeholders require to the company. The positioning of the company under study in the CSR matrix is based on the comparison among the three commitment aspects (disclosed, perceived, required) and it allows assessment and development of CSR strategies.Keywords: Corporate Social Responsibility (CSR), CSR Positioning Matrix, Global Reporting Initiative (GRI), Stakeholder Orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33663 Measuring the CSR Company-Stakeholder Fit
Authors: Armando Calabrese, Roberta Costa, Tamara Menichini, Francesco Rosati
Abstract:
As a company competitiveness depends more and more on the relationship with its stakeholders, the topic of companystakeholder fit is becoming increasingly important. This fit affects the extent to which a stakeholder perceives CSR company commitment, values and behaviors and, therefore, stakeholder identification in a company and his/her loyalty to it. Consequently, it is important to measure the alignment or the gap between stakeholder CSR demands, values, preferences and perceptions, and the company CSR disclosed commitment, values and policies. In this paper, in order to assess the company-stakeholder fit about corporate responsibility, an innovative CSR fit positioning matrix is proposed. This matrix is based on the measurement of a company CSR disclosed commitment and stakeholder perceived and required commitment. The matrix is part of a more complex methodology based on Global Reporting Initiative (GRI) indicators, content analysis and stakeholder questionnaires. This methodology provides appropriate indications for helping companies to achieve CSR company-stakeholder fit, by leveraging both CSR commitment and communication. Moreover, it could be used by top management for comparing different companies and stakeholders, and for planning specific CSR strategies, policies and activities.
Keywords: Company-Stakeholder fit, Corporate Social Responsibility (CSR), CSR Positioning Matrix, Global Reporting Initiative (GRI), Stakeholder Orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29552 Intellectual Capital and Competitive Advantage: An Analysis of the Biotechnology Industry
Authors: Campisi Domenico, Costa Roberta
Abstract:
Intellectual capital measurement is a central aspect of knowledge management. The measurement and the evaluation of intangible assets play a key role in allowing an effective management of these assets as sources of competitiveness. For these reasons, managers and practitioners need conceptual and analytical tools taking into account the unique characteristics and economic significance of Intellectual Capital. Following this lead, we propose an efficiency and productivity analysis of Intellectual Capital, as a determinant factor of the company competitive advantage. The analysis is carried out by means of Data Envelopment Analysis (DEA) and Malmquist Productivity Index (MPI). These techniques identify Bests Practice companies that have accomplished competitive advantage implementing successful strategies of Intellectual Capital management, and offer to inefficient companies development paths by means of benchmarking. The proposed methodology is employed on the Biotechnology industry in the period 2007-2010.
Keywords: Data Envelopment Analysis, Innovation, Intangible assets, Intellectual Capital, Malmquist Productivity Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.
Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174