Search results for: Nittaya Boonsit
8 Spatio-Temporal Analysis and Mapping of Malaria in Thailand
Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit
Abstract:
This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.
Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21477 Approximate Frequent Pattern Discovery Over Data Stream
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop
Abstract:
Frequent pattern discovery over data stream is a hard problem because a continuously generated nature of stream does not allow a revisit on each data element. Furthermore, pattern discovery process must be fast to produce timely results. Based on these requirements, we propose an approximate approach to tackle the problem of discovering frequent patterns over continuous stream. Our approximation algorithm is intended to be applied to process a stream prior to the pattern discovery process. The results of approximate frequent pattern discovery have been reported in the paper.Keywords: Frequent pattern discovery, Approximate algorithm, Data stream analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13426 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17425 Decision Rule Induction in a Learning Content Management System
Authors: Nittaya Kerdprasop, Narin Muenrat, Kittisak Kerdprasop
Abstract:
A learning content management system (LCMS) is an environment to support web-based learning content development. Primary function of the system is to manage the learning process as well as to generate content customized to meet a unique requirement of each learner. Among the available supporting tools offered by several vendors, we propose to enhance the LCMS functionality to individualize the presented content with the induction ability. Our induction technique is based on rough set theory. The induced rules are intended to be the supportive knowledge for guiding the content flow planning. They can also be used as decision rules to help content developers on managing content delivered to individual learner.Keywords: Decision rules, Knowledge induction, Learning content management system, Rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15684 Mining Frequent Patterns with Functional Programming
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21353 Knowledge Mining in Web-based Learning Environments
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.Keywords: Knowledge mining, Web-based learning, Learning environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17862 On Pattern-Based Programming towards the Discovery of Frequent Patterns
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop
Abstract:
The problem of frequent pattern discovery is defined as the process of searching for patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a database. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages. Such paradigm is inefficient when set of patterns is large and the frequent pattern is long. We suggest a high-level declarative style of programming apply to the problem of frequent pattern discovery. We consider two languages: Haskell and Prolog. Our intuitive idea is that the problem of finding frequent patterns should be efficiently and concisely implemented via a declarative paradigm since pattern matching is a fundamental feature supported by most functional languages and Prolog. Our frequent pattern mining implementation using the Haskell and Prolog languages confirms our hypothesis about conciseness of the program. The comparative performance studies on line-of-code, speed and memory usage of declarative versus imperative programming have been reported in the paper.Keywords: Frequent pattern mining, functional programming, pattern matching, logic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13431 A Monte Carlo Method to Data Stream Analysis
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham
Abstract:
Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417