Search results for: Loay Al Kafafi
6 Robot Cell Planning
Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi
Abstract:
A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20455 More than Two Decades of Research on Groupware: A Systematic Lexical Analysis
Authors: Loay A. Altamimi
Abstract:
Collaborative technologies or software known as groupware are key enabling tools for communication, collaboration and co-ordination among individuals, work groups and businesses. Available reviews of the groupware literature are very few, and mostly neither systematic nor recent. This paper is an effort to fill this gap, and to provide researchers, with a more up-to-date and wide systematic literature review. For this purpose, 1087 scholarly articles, published from 1990 to 2013, on the topic of groupware, were collected by the literature search. The study here adopted the systematic approach of lexical analysis for the analysis of those articles.
Keywords: Lexical Analysis, Literature review, Groupware, collaborative Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23724 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System
Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh
Abstract:
A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.
Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21583 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31992 Comparative Study Using Weka for Red Blood Cells Classification
Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.
Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29971 Iris Recognition Based On the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.
Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965