Search results for: Bradyrhizobium japanicum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: Bradyrhizobium japanicum

6 Viability of Bradyrhizobium japanicum on Soybean Seeds Enhanced by Magnetite Nanoparticles during Desiccation

Authors: M. R. Ghalamboran, J. J. Ramsden

Abstract:

The aim of this study was to investigate whether magnetite nanoparticles affect the viability of Bradyrhizobium japanicum cells residing on the surface of soybean seeds during desiccation. Different concentrations of nanoparticles suspended in liquid medium, mixed with and adhering to Bradyrhizobium japanicum, were investigated at two temperatures, using both soybean seeds and glass beads as surrogates. Statistical design was a complete randomized block (CRB) in a factorial 6×2×2×6 experimental arrangement with four replications. The most important variable was the viability of Bradyrhizobium on the surface of the seeds. The nanoparticles increased Bradyrhizobium viability and inoculated seeds stored at low temperature had greater viability when nanoparticles had been added. At the optimum nanoparticle concentration, 50% bacterium viability on the seeds was retained after 5 days at 4ºC. Possible explanations for the observed effects are proposed.

Keywords: Bradyrhizobium japanicum, magnetitenanoparticles, soybean seed, viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
5 Production of IAA by Bradyrhizobium sp.

Authors: Nisa Rachmania Mubarik, Irni Mahagiani, Aris Tri Wahyudi

Abstract:

The objective of this research was to determine the potency of indigenous acid-aluminium tolerant Bradyrhizobium japonicum as producer of indole acetic acid (IAA) and applied it as nitrogen fixation on local soybeans viz Anjasmoro, Tanggamus (yellow soybean seeds), and Detam (black soybean seed). Three isolates of acid-aluminium tolerant Bradyrhizobium japonicum (BJ) were used in this research, i.e. BJ 11 (wt), BJ 11 (19) - BJ 11(wt) mutant, and USDA 110 as a reference isolate. All of isolates tested to produce the IAA by using Salkowsky method. Effect of IAA production by each of B. japonicum was tested on growth pouch and greenhouse using three varieties of soybean. All isolates could grow well and produce IAA on yeast mannitol broth (YMB) medium in the presence of 0.5 mM L-tryptophan. BJ 11 (19) produced the highest of IAA at 4 days incubation compared to BJ 11 (wt) and USDA 110. All tested isolates of Bradyrhizobium japonicum have showed effect on stimulating the formation of root nodules in soybean varieties grown on Leonard bottle. The concentration of IAA on root nodules of soybean symbiotic with B. japonicum was significantly different with control, except on the treatment using Tanggamus soybean.

Keywords: Acid-aluminium tolerant isolate, Bradyrhizobium japonicum, indole acetic acid, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
4 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for

Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti

Abstract:

Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.

Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
3 Restriction Specificity of Some Soybean Genotypes to Bradyrhizobium japonicum Serogrous

Authors: H.K. Abd El-Maksoud, H.H. Keyser

Abstract:

Competitive relationships among Bradyrhizobium japonicum USDA serogroup 123, 122 and 138 were screened versus the standard commercial soybean variety Williams and two introductions P1 377578 "671" in a field trial. Displacement of strain 123 by an effective strain should improved N2 fixation. Root nodules were collected and strain occupancy percentage was determined using strain specific fluorescent antibodies technique. As anticipated the strain USDA 123 dominated 92% of nodules due to the high affinity between the host and the symbiont. This dominance was consistent and not changed materially either by inoculation practice or by introducing new strainan. The interrelationship between the genotype Williams and serogroup 122 & 138 was found very weak although the cell density of the strain in the rhizosphere area was equal. On the other hand, the nodule occupancy of genotypes 671 and 166 with rhizobia serogroup 123 was almost diminished to zero. . The data further exhibited that the genotypes P1 671 and P1 166 have high affinity to colonize with strains 122 and 138 whereas Williams was highly promiscuous to strain 123.

Keywords: B. japonicum serogroups, Competition, Host restriction, Soybean genotype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
2 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils

Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen

Abstract:

The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.

Keywords: Biological nitrogen fixation, inoculation, rhizobium, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
1 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: Drought stress, inoculation, N-fertilizer, soybean physiology, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824