Search results for: Bioluminescence
5 Investigation on Toxicity of Manufactured Nanoparticles to Bioluminescence Bacteria Vibrio fischeri
Authors: E. Binaeian, SH. Soroushnia
Abstract:
Acute toxicity of nano SiO2, ZnO, MCM-41 (Meso pore silica), Cu, Multi Wall Carbon Nano Tube (MWCNT), Single Wall Carbon Nano Tube (SWCNT) , Fe (Coated) to bacteria Vibrio fischeri using a homemade luminometer , was evaluated. The values of the nominal effective concentrations (EC), causing 20% and 50% inhibition of biouminescence, using two mathematical models at two times of 5 and 30 minutes were calculated. Luminometer was designed with Photomultiplier (PMT) detector. Luminol chemiluminescence reaction was carried out for the calibration graph. In the linear calibration range, the correlation coefficients and coefficient of Variation (CV) were 0.988 and 3.21% respectively which demonstrate the accuracy and reproducibility of the instrument that are suitable. The important part of this research depends on how to optimize the best condition for maximum bioluminescence. The culture of Vibrio fischeri with optimal conditions in liquid media, were stirring at 120 rpm at a temperature of 150C to 180C and were incubated for 24 to 72 hours while solid medium was held at 180C and for 48 hours. Suspension of nanoparticles ZnO, after 30 min contact time to bacteria Vibrio fischeri, showed the highest toxicity while SiO2 nanoparticles showed the lowest toxicity. After 5 min exposure time, the toxicity of ZnO was the strongest and MCM-41 was the weakest toxicant component.
Keywords: Bioluminescence, effective concentration, nanomaterials, toxicity, Vibrio fischeri.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29604 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria
Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk
Abstract:
Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.
Keywords: The coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16373 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain
Authors: Madiha El Awamie, Catherine Rees
Abstract:
Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.
Keywords: Antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822 Toxicity Study of Two Different Synthesized Silver Nanoparticles on Bacteria Vibrio Fischeri
Authors: E. Binaeian, A.M. Rashidi, H. Attar
Abstract:
A comparative evaluation of acute toxicity of synthesized nano silvers using two different procedures (biological and chemical reduction methods) and silver ions on bacteria Vibrio fischeri was investigated. The bacterial light inhibition test as a toxicological endpoint was used by applying of a homemade luminometer. To compare the toxicity effects as a quantitative parameter, a nominal effective concentrations (EC) of chemicals and a susceptibility constant (Z-value) of bacteria, after 5 min and 30 min exposure times, were calculated. After 5 and 30 min contact times, the EC50 values of two silver nanoparticles and the EC20 values were about similar. It demonstrates that toxicity of silvers was independent of their procedure. The EC values of nanoparticles were larger than those of the silver ions. The susceptibilities(Z- Values) of V.fischeri (L/mg) to the silver ions were greater than those of the nano silvers. According to the EC and Z values, the toxicity of silvers decreased in the following order: Silver ions >> silver nanoparticles from chemical reduction method ~ silver nanoparticles from biological method.Keywords: Bioluminescence, Luminometer, silver nano particles, Toxicity, Vibrio fischeri
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30791 Rapid Determination of Biochemical Oxygen Demand
Authors: Mayur Milan Kale, Indu Mehrotra
Abstract:
Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.Keywords: BOD, Four methods, Rapid estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641