Search results for: Anjana Goen
7 Review of Surface Electromyogram Signals: Its Analysis and Applications
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.
Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35166 Pattern Recognition Based Prosthesis Control for Movement of Forearms Using Surface and Intramuscular EMG Signals
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Myoelectric control system is the fundamental component of modern prostheses, which uses the myoelectric signals from an individual’s muscles to control the prosthesis movements. The surface electromyogram signal (sEMG) being noninvasive has been used as an input to prostheses controllers for many years. Recent technological advances has led to the development of implantable myoelectric sensors which enable the internal myoelectric signal (MES) to be used as input to these prostheses controllers. The intramuscular measurement can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk thus allowing for more independent control sites. However, little work has been done to compare the two inputs. In this paper we have compared the classification accuracy of six pattern recognition based myoelectric controllers which use surface myoelectric signals recorded using untargeted (symmetric) surface electrode arrays to the same controllers with multichannel intramuscular myolectric signals from targeted intramuscular electrodes as inputs. There was no significant enhancement in the classification accuracy as a result of using the intramuscular EMG measurement technique when compared to the results acquired using the surface EMG measurement technique. Impressive classification accuracy (99%) could be achieved by optimally selecting only five channels of surface EMG.
Keywords: Discriminant Locality Preserving Projections (DLPP), myoelectric signal (MES), Sparse Principal Component Analysis (SPCA), Time Frequency Representations (TFRs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14075 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13064 Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm
Authors: Anjana Choudhary
Abstract:
The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.
Keywords: Bit Error Rate, Genetic Algorithm, Power, Phase Shift Keying, Quadrature Amplitude Modulation, Signal to Noise Ratio, Wireless Ad Hoc Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31173 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India
Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma
Abstract:
In the present study, presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, 9 bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were consisted of 3 bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of nontoxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.
Keywords: Biodegradation, carbendazim, consortium, Endosulfan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36502 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302