Search results for: Aditi Kar Gangopadhyay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Aditi Kar Gangopadhyay

4 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variance is known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the mehod of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: Estimation after selection, Brewster-Zidek technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
3 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
2 Flood Hazard Mapping in Dikrong Basin of Arunachal Pradesh (India)

Authors: Aditi Bhadra, Sutapa Choudhury, Daita Kar

Abstract:

Flood zoning studies have become more efficient in recent years because of the availability of advanced computational facilities and use of Geographic Information Systems (GIS). In the present study, flood inundated areas were mapped using GIS for the Dikrong river basin of Arunachal Pradesh, India, corresponding to different return periods (2, 5, 25, 50, and 100 years). Further, the developed inundation maps corresponding to 25, 50, and 100 year return period floods were compared to corresponding maps developed by conventional methods as reported in the Brahmaputra Board Master Plan for Dikrong basin. It was found that, the average deviation of modelled flood inundation areas from reported map inundation areas is below 5% (4.52%). Therefore, it can be said that the modelled flood inundation areas matched satisfactorily with reported map inundation areas. Hence, GIS techniques were proved to be successful in extracting the flood inundation extent in a time and cost effective manner for the remotely located hilly basin of Dikrong, where conducting conventional surveys is very difficult.

Keywords: Flood hazard mapping, GIS, inundation area, return period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
1 Computer Aided Drug Design and Studies of Antiviral Drug against H3N2 Influenza Virus

Authors: Aditi Shukla, Ambarish S. Vidyarthi, Subir Samanta

Abstract:

The worldwide prevalence of H3N2 influenza virus and its increasing resistance to the existing drugs necessitates for the development of an improved/better targeting anti-influenza drug. H3N2 influenza neuraminidase is one of the two membrane-bound proteins belonging to group-2 neuraminidases. It acts as key player involved in viral pathogenicity and hence, is an important target of anti-influenza drugs. Oseltamivir is one of the potent drugs targeting this neuraminidase. In the present work, we have taken subtype N2 neuraminidase as the receptor and probable analogs of oseltamivir as drug molecules to study the protein-drug interaction in anticipation of finding efficient modified candidate compound. Oseltamivir analogs were made by modifying the functional groups using Marvin Sketch software and were docked using Schrodinger-s Glide. Oseltamivir analog 10 was detected to have significant energy value (16% less compared to Oseltamivir) and could be the probable lead molecule. It infers that some of the modified compounds can interact in a novel manner with increased hydrogen bonding at the active site of neuraminidase and it might be better than the original drug. Further work can be carried out such as enzymatic inhibition studies; synthesis and crystallizing the drug-target complex to analyze the interactions biologically.

Keywords: H3N2 Influenza, Neuraminidase, Oseltamiviranalogs, structure based drug designing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538