
 

 

 
Abstract—There is a necessity among rail transportation 

authorities for a superior understanding of the rail track degradation 
overtime and the factors influencing rail degradation. They need an 
accurate technique to identify the time when rail tracks fail or need 
maintenance. In turn, this will help to increase the level of safety and 
comfort of the passengers and the vehicles as well as improve the cost 
effectiveness of maintenance activities. An accurate model can play a 
key role in prediction of the long-term behaviour of railroad tracks. An 
accurate model can decrease the cost of maintenance. In this research, 
the rail track degradation is predicted using an autoregressive moving 
average with exogenous input (ARMAX). An ARMAX has been 
implemented on Melbourne tram data to estimate the values for the 
tram track degradation. Gauge values and rail usage in Million Gross 
Tone (MGT) are the main parameters used in the model. The 
developed model can accurately predict the future status of the tram 
tracks.  
 

Keywords—ARMAX, Dynamic systems, MGT, Prediction, Rail 
degradation. 

I. INTRODUCTION 

N the past few decades, the expansion of transport networks 
has been the main concern of transport organizations. Since 

the infrastructure of railways is growing fast, maintenance 
planning became their main focus to ensure the operation of 
rail systems at best and safe practice standards.  

Currently, rail transport organizations heavily rely on the 
experience and expertise of the maintenance teams to identify 
and locate the segments on rail tracks, which need to be 
repaired or replaced. However, manual inspections are costly 
and time consuming. Therefore, the focus has shifted onto 
intelligently managing the existing rail tracks, and efforts have 
been made to design a structured framework for maintenance 
planning and help reducing the unnecessary maintenance 
costs. Previous studies have mostly focused on modelling and 
prediction of rail track degradation for heavy rail system 
(train) rather than light rail system (trams) [1]-[4]. 

This particular study will focus on tram network of 
Melbourne, Australia, which is the largest metropolitan tram 
network in the world and covers 250 km of rail tracks [5]. The 
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data for the Melbourne tram network have been collected from 
2010 to 2015 through inspection on-sight and stocked in a 
non-digitized way for a long time. Different parameters 
contribute to the degradation of rail tracks. The gauge and 
MGT are important parameters for tram tracks degradation. In 
this context, an autoregressive moving average with exogenous 
input (ARMAX) is developed for curves sections using the 
gauge and MGT values to predict the degradation of tram 
tracks over the next years. Hence, this model allows decision 
makers to achieve an optimization in maintenance activities 
and to save time and costs. 

The structure of the paper is as follows. Section II presents 
a relevant literature review on previous degradation models. 
Section III proposes an ARMAX model covering the noise of 
the data with a very low Mean Absolute Error (MAE). Section 
IV concludes by suggesting directions for future research.  

II. LITERATURE REVIEW 

A number of previous researches presented different models 
of railway degradation prediction [1]-[4]. Different parameters 
contributed to the tram tracks degradation modelling such as 
asset condition (i.e. sleepers, ballast, fastening) [6], age of 
rails, axle load [7], [8], speed [8], MGT [7], track curvature 
[8], [9] and rail lubrication [10]. According to the previous 
studies, rail degradation was predicted using different model 
types. One of these model types is the statistical models, 
which are based on parameters of the rail structure and the 
affecting factors of the tram tracks such as traffic and track 
components. Andrade and Teixeira proposed Hierarchical 
Bayesian Models (HBM), which are flexible statistical models 
that provide a prediction of the railway degradation [11]. The 
study was considering two main quality parameters, which are 
longitudinal level defects and horizontal alignment defects, in 
relation to the degradation of rail track geometry. The 
structure of this model adopts the quality parameters as 
random variables that can be uncertainly calculated by a prior 
distribution. This study concluded that horizontal alignment 
defects are less predictable than longitudinal level defects. 
HBMs were also developed by other research studies [12]-
[14]. However, these models rely on other statistical models 
such as Markov models, especially in the case of high 
numerical data [15], [16].  

Another degradation model type is stochastic models, which 
are also statistical models. They aim to understand the 
distribution of time to degradation events and predict their 
performance. A stochastic model was developed to predict the 
degradation of the Portuguese railway Northern Line [17]. 
This study showed a high accuracy of the model developed for 
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the rail degradation over a period of time. However, the 
application of this model may require more understanding and 
explanation of the process. Also, there is no evidence to 
clearly validate the claim of the degradation pattern and its 
distribution. 

Artificial Neural Networks (ANNs) are another type of 
modelling that has been used to predict the degradation of 
railways [18], [19]. ANNs refer to the knowledge of biological 
neural networks. They estimate functions depending on large 
numbers of inputs and unknowns. Reference [20] used 
different parameters to predict the rail degradation using an 
ANNs model which include: the combined track record index 
(CTR), traffic volume (e.g. light and heavy), speed, 
geographic location (e.g. plain, hilly, and mountainous), 
curves radius and gradient. The study compared the model 
predictions to the observed data of one of the sets. 
Consequently, this comparison showed that the following year 
CTR indices were at the same level as the CTR indices of the 
previous year or slightly lower than that. Furthermore, another 
study was proposed presenting an ANNs model to predict the 
degradation of tram tracks using maintenance data in 
Melbourne [21]. The data were collected and divided into 
three categories including inspection data, load data and repair 
data. Inspection data were collected for Melbourne tram 
network, from 2009 to 2013, covering different types of 
segments of four routes such as straights, curves, H-crossings 
and crossovers. Out of these segments, curves were the focal 
point since they have a higher failure rate than the other 
segments [22], [23]. This study showed that the load data 
without passengers in MGT, the gauge values and the rail 
profile were the most affecting factors of the ANNs 
degradation model. The application of the ANNs model was 
highly accurate.  

Based on this review, a comparison of different degradation 
models was conducted. The majority of previous degradation 
models were general and oriented towards different 
parameters and variables affecting the degradation of rail 
tracks which is not available in Melbourne track data. As a 
result, in this paper, we suggest an ARMAX model focused on 
the gauge and MGT to predict the degradation of tram tracks 
in Melbourne over the next years. This will help predict the 
future maintenance procedures needed for the tram tracks 
resulting in fewer expenses, less effort and time saving.  

III. METHODOLOGY 

The rail geometric degradation is usually quantified with 
many different defects. One of the most important defects is 
gauge deviation defect and the MGT factor. In this paper, the 
main focus is the prediction of gauge defect in the future. The 
entire data used for this research consist of gauge and MGT 
values from 2010 to 2015, respectively. In Fig. 1, Gauge is 
plotted in respect to MGT. When Fig. 1 is considered, it is 
obvious that there is a meaningful relationship between gauge 
and MGT. Therefore, the gauge model 	 1  is 
considered to be a function of 	 	 0	 	  
and 	 	 0	 	  the function could be 

described as (1): 
 

Gauge(t 1)  f (gauge(t  i), MGT(t  i))  for i=0,1,…n    (1) 
 
To model the system, ARMAX approach has been utilized 

in this research. Statisticians use the time series terminology to 
explain applications that have sequenced successive equally 
spaced points in time. Some examples of time series 
modelling are the world oil price, daily price of power market, 
weather forecast and railway deterioration prediction [24]-
[30]. Railway deterioration is affected by time and different 
parameters (e.g. the longitudinal levelling defects, the 
horizontal alignment defects, the cant defects, the gauge 
deviations and the track twist). However, these variables are 
mainly not provided in the datasets. Therefore, the analysis of 
this study is mostly focused on the gauge defect and MGT 
variables. The gauge is modelled as the most important factor 
of tram tracks degradation. 

 

 

Fig. 1 The relationship between gauge values and MGT 
 
The Autoregressive (AR) time series model is a very 

common type of system representation with few linear 
parameters [30]. In the AR model, output of system is derived 
in an autoregressive manner to previous value of outputs by 
filtering the white noise  as shown in (2): 

 

y(k)  1

D(q)
 (k)  (2) 

 
	is the output in time , and  is the white noise. It is 

clear that time series models are not accurate enough without 
considering the input so autoregressive with exogenous input 
(ARX) model is the extended form of the AR model which 
can be written as (3): 

 

y(k)  B(q)

A(q)
u(k) 1

D(q)
v(k) (3) 
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As a result of high noise in the gauge values, different 
dynamic system models have been evaluated on the data and 
ARMAX model was best fitted with the lowest MAE. 
Therefore, this method has been selected for system 
modelling. ARMAX model is in fact the extended noise model 
of the ARX with more flexibility. The ARMAX model is one 
of the most useful models in linear dynamic system modelling, 
although the model is nonlinear in parameters. ARMAX can 
be described as shown in (4): 

 
A(q)y(k)  B(q)u(k)C(q)v(k)  (4) 

 
The predictor of ARMAX can be written as (5): 
 

ŷ(k k1)  B(q)

C(q)
u(k) 1-

A(q)

C(q)









y(k)  (5) 

 
The predictor is stable if  is stable. The prediction error 

of ARMAX model can be written as: 
 

e(k)  A(q)

C(q)
y(k) -

B(q)

C(q)
u(k)  (6) 

 
The estimation of the ARMAX model can be done through 

the following procedure. First, an ARX model estimation for 
the data should be calculated as shown in (7) with respect to 
the data. 

 

̂
ARX

 (XTX)1 XTy (7) 

 
In the second part, the ARMAX model parameters should 

be calculated with a nonlinear procedure. By using nonlinear 
least square methods, the model parameters can be identified. 
For the nonlinear least square models the computation of the 
gradients is necessary. 

As the squared error is e2 (k)  (y(k) ŷ(k))2 , so 

e2


 2e(k)

ŷ


. Thus, the gradient of the estimated model 

must be calculated.  
By multiplying both sides of (5) by , the equation 

could be rewritten as: 
 

C(q)ŷ(k k1)  B(q)u(k) C(q) A(q)  y(k)  (8) 

 

The differentiation 
e2


yields to the differentiation (8) with 

respect to	 , , . 
 

C(q)
ŷ(k k1)

ai

 y(k i)  (9)  

 
Therefore,  
 

ŷ(k k1)

ai

  1

C(q)
y(k i) (10) 

 
Equation (9) should be calculated with respect to	 ,  

which yields to: 
 

C(q)
ŷ(k k1)

bi

 u(k i) (11) 

 
and,  
 

ŷ(k k1)

ci

 1

C(q)
y(k i) ŷ(k i k i 1) (12) 

 
Therefore, the gradient can be calculated by the above 

equations. Various experiences have reported that the above 
equation convergence to a global optimal parameters [29]. 

In following section, ARMAX approach is implemented on 
the Yarra tram datasets on curve sections. The model has been 
trained on each sample and tested on the rest of the data. Fig. 2 
shows the MAE of model on the data when sample 	has been 
used as the training data; the MAE is the error calculated on 
all the data excluding the trained data. 

 

 

Fig. 2 MAE on test data when sample x has been used as the training 
data 

 
To find the best sample that can be used in modelling the 

system, R-square criteria need to be calculated. Fig. 3 
demonstrates the R-square value for the test data if sample  is 
used to model the system. 

Fig. 3 shows the R-square value of the model is different 
when it is trained using different samples. In some samples, 
the R-square is relatively higher. By considering that sample k 
has the highest R-square and using this sample for the training, 
the result of MAE on each test sample in the whole dataset 
could be best summarized in Fig. 4. 

Fig. 4 shows that, if the system is trained by sample k and 
be tested on the other data, the MAE is just below 0.1 and the 
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MAE is calculated using: 
 

MAE=
Real value-Estimated value

i


Number of data
 (13) 

 

 

Fig. 3 R square on test data when sample x has been used as the 
training data 

 

 

Fig. 4 MAE on test data when sample k has been used as the training 
data 

 
The estimated parameters, if sample k is used for the 

training purpose, are presented in (14): 
 

y(k)a1y(k -1)... any(k - n)

 b1u(k - nm)...bnu(k - n - nm)e(k)
c1e(k -1) ... cme(k - m)    

 (14)  

 

A(z) 11.504 z1  0.4602z2

 
 
B(z)  6.227e 0.9 
 

C(z) 1 0.9948 z1

 
 

As seen in (14), the values for the input data are very low 
and that is due to the higher values of MGT in respect to the 
gauge values. The real data versus the estimated data are 
plotted in Fig. 5 showing the accuracy of the model. 

 

 
Fig. 5 Real data versus estimated data on test samples 

 
To summarize the findings of this study, the most important 

factors influencing the tram track degradation are summarized 
in Table I. 

 
TABLE I 

STATISTICAL PARAMETERS OF MODEL 

Parameters Test data 

R square 0.8901 

MSE 0.5630 

MAE 0.0796 

 
As seen in Fig. 5 and Table I, the R-square indicates reveals 

that the model explains most of the variability of the response 
data nearby its mean and is accurate enough in predicting tram 
track degradation. 

IV. CONCLUSION 

It is highly necessary for maintenance authorities to acquire 
a superior level of understanding on how the light rail tracks 
degrade overtime according to different factors. Also, 
knowing how the tracks behave in the long run will provide 
them the advantage of predicting the maintenance work 
accurately. Having done this, it decreases the amount of 
money that needs to be spending unnecessarily in maintenance 
due to human error. In this paper, a dynamic model is put 
forward to model tram track degrading. At the first part, we 
have shown that there is a meaningful relationship between 
gauge and MGT. Then, ARMAX is used due to the 
complexity of data and their noise. The model is trained by 
different samples of the data and tested on the other parts of 
these samples. Although the test data include a high 
percentage of noise and many fluctuations, the model could 
follow the gauge value with very low error percentage. 
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In our model, we do not consider other parameters such as 
twist and cant, and we only focuses on curves segments. In a 
further work, those parameters can be analysed on other 
segments such as straights and crossovers. 
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