Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: desiccant

5 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: Air conditioning, dehumidification, desiccant, lithium chloride, tube bundle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64
4 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis

Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone

Abstract:

The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21C and 25C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.

Keywords: Dehumidification, nodal calculation, radiant cooling panel, system sizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280
3 A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination

Authors: Zied Guidara, Alexander Morgenstern, Aref Younes Maalej

Abstract:

In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.

Keywords: Air conditioning, desalination, condensation, design, desiccant wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
2 Preliminary Study of Desiccant Cooling System under Algerian Climates

Authors: N. Hatraf, N. Moummi

Abstract:

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Keywords: Dehumidification, efficiency, humidity, TRNSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520
1 Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region

Authors: R. Abdulrahman, I. Sebastine

Abstract:

Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower.

Keywords: Aspen Hysys, Process simulation, gas dehydration, process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8439