Search results for: work based learning
13787 Basic Research on Applying Temporary Work Engineering at the Design Phase
Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim
Abstract:
The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.
Keywords: Temporary work engineering, design phase, constructability, building construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97213786 Literature-Based Discoveries in Lupus Treatment
Authors: Oluwaseyi Jaiyeoba, Vetria Byrd
Abstract:
Systemic lupus erythematosus (aka lupus) is a chronic disease known for its chameleon-like ability to mimic symptoms of other diseases rendering it hard to detect, diagnose and treat. The heterogeneous nature of the disease generates disparate data that are often multifaceted and multi-dimensional. Musculoskeletal manifestation of lupus is one of the most common clinical manifestations of lupus. This research links disparate literature on the treatment of lupus as it affects the musculoskeletal system using the discoveries from literature-based research articles available on the PubMed database. Several Natural Language Processing (NPL) tools exist to connect disjointed but related literature, such as Connected Papers, Bitola, and Gopalakrishnan. Literature-based discovery (LBD) has been used to bridge unconnected disciplines based on text mining procedures. The technical/medical literature consists of many technical/medical concepts, each having its sub-literature. This approach has been used to link Parkinson’s, Raynaud, and Multiple Sclerosis treatment within works of literature. Literature-based discovery methods can connect two or more related but disjointed literature concepts to produce a novel and plausible approach to solving a research problem. Data visualization techniques with the help of natural language processing tools are used to visually represent the result of literature-based discoveries. Literature search results can be voluminous, but Data visualization processes can provide insight and detect subtle patterns in large data. These insights and patterns can lead to discoveries that would have otherwise been hidden from disjointed literature. In this research, literature data are mined and combined with visualization techniques for heterogeneous data to discover viable treatments reported in the literature for lupus expression in the musculoskeletal system. This research answers the question of using literature-based discovery to identify potential treatments for a multifaceted disease like lupus. A three-pronged methodology is used in this research: text mining, natural language processing, and data visualization. These three research-related fields are employed to identify patterns in lupus-related data that, when visually represented, could aid research in the treatment of lupus. This work introduces a method for visually representing interconnections of various lupus-related literature. The methodology outlined in this work is the first step toward literature-based research and treatment planning for the musculoskeletal manifestation of lupus. The results also outline the interconnection of complex, disparate data associated with the manifestation of lupus in the musculoskeletal system. The societal impact of this work is broad. Advances in this work will improve the quality of life for millions of persons in the workforce currently diagnosed and silently living with a musculoskeletal disease associated with lupus.
Keywords: Systemic lupus erythematosus, LBD, Data Visualization, musculoskeletal system, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50613785 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication
Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.
Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107013784 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.
Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69113783 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238713782 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: Motivation, online learning, pedagogy, podcast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76413781 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation
Authors: L. Grinis, V. Haslavsky
Abstract:
Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.
Keywords: Drilling, stuck-pipe, vibration, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260213780 An AI-Generated Semantic Communication Platform in Human-Computer Interaction Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of Human-Computer Interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology and more. The HCI courses in the Department of Electronics at Tsinghua University, known as the Media and Cognition course, is constantly updated to reflect the most advanced technological advances, such as virtual reality, augmented reality and artificial intelligence-based interaction. For more than a decade, this course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which has gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. The latest version of the HCI course practices a semantic communication platform based on AI-generated techniques. We explored a student-centered model and proposed an interest-based teaching method. Students are no longer just recipients of knowledge, but become active participants in the learning process driven by personal interests, thereby encouraging students to take responsibility for their own education. One of the latest results of this teaching approach in the course "Media and Cognition" is a student proposal to develop a semantic communication platform rooted in artificial intelligence generative technologies. The platform solves a key challenge in communications technology: the ability to preserve visual signals. The interest-based approach emphasizes personal curiosity and active participation, and the proposal of an artificial intelligence-generated semantic communication platform is an example and successful result of how students can exert greater creativity when they have the power to control their own learning.
Keywords: Human-computer interaction, media and cognition course, semantic communication, retain ability, prompts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16413779 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373513778 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89613777 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam Ambrose Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.
Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254013776 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.
Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93913775 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia
Authors: Gaya Tridinanti
Abstract:
Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.Keywords: Acquisition, enhancing, digital storytelling, English vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165413774 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles
Authors: Nabil El Kadhi, Minerva M. Bunagan
Abstract:
The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.Keywords: Accreditation, audit, quality assurance, teaching, learning and assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147713773 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained.
Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63713772 Authentic Leadership, Trust and Work Engagement
Authors: Arif Hassan, Forbis Ahmed
Abstract:
The issue of leadership has been investigated from several perspectives; however, very less from ethical perspective. With the growing number of corporate scandals and unethical roles played by business leaders in several parts of the world, the need to examine leadership from ethical perspective cannot be over emphasized. The importance of leadership credibility has been discussed in the authentic model of leadership. Authentic leaders display high degree of integrity, have deep sense of purpose, and committed to their core values. As a result they promote a more trusting relationship in their work groups that translates into several positive outcomes. The present study examined how authentic leadership contribute to subordinates- trust in leadership and how this trust, in turn, predicts subordinates- work engagement. A sample of 395 employees was randomly selected from several local banks operating in Malaysia. Standardized tools such as ALQ, OTI, and EEQ were employed. Results indicated that authentic leadership promoted subordinates- trust in leader, and contributed to work engagement. Also, interpersonal trust predicted employees- work engagement as well as mediated the relationship between this style of leadership and employees- work engagement.Keywords: Authentic Leadership, Interpersonal Trust, WorkEngagement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118613771 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178513770 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.
Keywords: Bilingualism, foreign language learning, L2 acquisition, willingness to communicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147913769 EASEL: Evaluation of Algorithmic Skills in an Environment Learning
Authors: A. Bey, T. Bensebaa, H. Benselem
Abstract:
This paper attempts to explore a new method to improve the teaching of algorithmic for beginners. It is well known that algorithmic is a difficult field to teach for teacher and complex to assimilate for learner. These difficulties are due to intrinsic characteristics of this field and to the manner that teachers (the majority) apprehend its bases. However, in a Technology Enhanced Learning environment (TEL), assessment, which is important and indispensable, is the most delicate phase to implement, for all problems that generate (noise...). Our objective registers in the confluence of these two axes. For this purpose, EASEL focused essentially to elaborate an assessment approach of algorithmic competences in a TEL environment. This approach consists in modeling an algorithmic solution according to basic and elementary operations which let learner draw his/her own step with all autonomy and independently to any programming language. This approach assures a trilateral assessment: summative, formative and diagnostic assessment.Keywords: Algorithmic, assessment of competences, Technology Enhanced Learning (TEL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144213768 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: Retrieval, generative, deep learning, response generation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120413767 Methods of Forming Informational Culture Students
Authors: Altynbek Moshkalov
Abstract:
Along with the basic features of students\' culture information, with its widely usage oriented on implementation of the new information technologies in educational process that determines the search for ways of pointing to the similarity of interdisciplinary connections content, aims and objectives of the study. In this regard, the article questions about students\' information culture, and also presented information about the aims and objectives of the information culture process among students. In the formation of a professional interest in relevant information, which is an opportunity to assist in informing the professional activities of the essence of effective use of interactive methods and innovative technologies in the learning process. The result of the experiment proves the effectiveness of the information culture process of students in training the system of higher education based on the credit technology. The main purpose of this paper is a comprehensive review of students\' information culture.Keywords: Information culture, methods of information culture of students, educational system of the credit technology, distance learning, information of interest, information and communication technologies and tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166113766 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6613765 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.
Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168713764 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89413763 ALD HfO2 Based RRAM with Ti Capping
Authors: B. B. Weng, Z. Fang, Z. X. Chen, X. P. Wang, G. Q. Lo, D. L. Kwong
Abstract:
HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an Agilent-B1500A analyzer.
Keywords: HfOx, resistive switching, RRAM, metal capping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203913762 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109413761 Sliding Mode Based Behavior Control
Authors: Selim Yannier, Asif Sabanovic, Ahmet Onat, Muhammet Bastan
Abstract:
In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.Keywords: Autonomous Mobile Robot, Behavior Based Control, Fast Local Obstacle Avoidance, Sliding Mode Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175313760 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452413759 Performance Evaluation of an Online Text-Based Strategy Game
Authors: Nazleeni S. Haron, Mohd K. Zaime , Izzatdin A. Aziz, Mohd H. Hasan
Abstract:
Text-based game is supposed to be a low resource consumption application that delivers good performances when compared to graphical-intensive type of games. But, nowadays, some of the online text-based games are not offering performances that are acceptable to the users. Therefore, an online text-based game called Star_Quest has been developed in order to analyze its behavior under different performance measurements. Performance metrics such as throughput, scalability, response time and page loading time are captured to yield the performance of the game. The techniques in performing the load testing are also disclosed to exhibit the viability of our work. The comparative assessment between the results obtained and the accepted level of performances are conducted as to determine the performance level of the game. The study reveals that the developed game managed to meet all the performance objectives set forth.Keywords: Online text-based games, performance evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160913758 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.
Keywords: Brazil, higher education, internationalization, multilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804