Search results for: option price valuation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 534

Search results for: option price valuation

504 Comparative Approach of Measuring Price Risk on Romanian and International Wheat Market

Authors: Larisa N. Pop, Irina M. Ban

Abstract:

This paper aims to present the main instruments used in the economic literature for measuring the price risk, pointing out on the advantages brought by the conditional variance in this respect. The theoretical approach will be exemplified by elaborating an EGARCH model for the price returns of wheat, both on Romanian and on international market. To our knowledge, no previous empirical research, either on price risk measurement for the Romanian markets or studies that use the ARIMA-EGARCH methodology, have been conducted. After estimating the corresponding models, the paper will compare the estimated conditional variance on the two markets.

Keywords: conditional variance, GARCH models, price risk, volatility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
503 Stock Price Forecast by Using Neuro-Fuzzy Inference System

Authors: Ebrahim Abbasi, Amir Abouec

Abstract:

In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.

Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
502 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: Real estate price, least-square, grey correlation, macroeconomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
501 The Study on the Stationarity of Housing Price-to-Rent and Housing Price-to-Income Ratios in China

Authors: Wen-Chi Liu

Abstract:

This paper aims to examine whether a bubble is present in the housing market of China. Thus, we use the housing  price-to-income ratios and housing price-to-rent ratios of 35 cities from 1998 to 2010. The methods of the panel KSS unit root test with a  Fourier function and the SPSM process are likewise used. The panel  KSS unit root test with a Fourier function considers the problem of  non-linearity and structural changes, and the SPSM process can avoid  the stationary time series from dominating the result-generated bias.  Through a rigorous empirical study, we determine that the housing  price-to-income ratios are stationary in 34 of the 35 cities in China.  Only Xining is non-stationary. The housing price-to-rent ratios are  stationary in 32 of the 35 cities in China. Chengdu, Fuzhou, and  Zhengzhou are non-stationary. Overall, the housing bubbles are not a  serious problem in China at the time.

 

Keywords: Housing Price-to-Income Ratio, Housing Price-to-Rent Ratio, Housing Bubbles, Panel Unit-Root Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
500 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
499 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
498 Factors Influencing the Housing Price: Developers’ Perspective

Authors: Ernawati Mustafa Kamal, Hasnanywati Hassan, Atasya Osmadi

Abstract:

The housing industry is crucial for sustainable development of every country. Housing is a basic need that can enhance the quality of life. Owning a house is therefore the main aim of individuals. However, affordability has become a critical issue towards homeownership. In recent years, housing price in the main cities has increased tremendously to unaffordable level. This paper investigates factors influencing the housing price from developer’s perspective and provides recommendation on strategies to tackle this issue. Online and face-to-face survey was conducted on housing developers operating in Penang, Malaysia. The results indicate that (1) location; (2) macroeconomics factor; (3) demographic factors; (4) land/zoning and; (5) industry factors are the main factors influencing the housing price. This paper contributes towards better understanding on developers’ view on how the housing price is determined and form a basis for government to help tackle the housing affordability issue.

Keywords: Factors influencing house price, housing affordability, housing developers, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7180
497 Economic Forecasting Model in Practice Using the Regression Analysis: The Relationship of Price, Domestic Output, Gross National Product, and Trend Variable of Gas or Oil Production

Authors: Ashiquer Rahman, Ummey Salma, Afrin Jannat

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or Organization of the Petroleum Exporting Countries (OPEC) announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study in relation between the number of wellheads and other economic variables may give us some understanding of the mechanism indicated the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: price of the wellhead, domestic output, and Gross National Product (GNP) constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: Price, domestic output, GNP, trend variable, wildcat activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44
496 Comparison of Valuation Techniques for Bone Age Assessment

Authors: N. Olarte L, A. Rubiano F, A. Mejía F.

Abstract:

This comparison of valuation techniques for bone age assessment is a work carried out by the Telemedicine Research Group of the Military University - TIGUM, as a preliminary to the Design and development a treatment system of hand and wrist radiological images for children aged 0-6 years to bone age assessment . In this paper the techniques mentioned for decades have been the most widely used and the statistically significant. Althought, initially with the current project, it wants to work with children who have limit age, this comparison and evaluation techniques work will help in the future to expand the study subject in the system to bone age assessment, implementing more techniques, tools and deeper analysis to accomplish this purpose.

Keywords: Atlas, Bone Age Assessment, Hand and Wrist Radiograph, Image Processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
495 Price Quoting Method for Contract Manufacturer

Authors: S. Homrossukon, W. Parinyasart

Abstract:

This is an applied research to propose the method for price quotation for a contract electronics manufacturer. It has had a precise price quoting method but such method could not quickly provide a result as the customer required. This reduces the ability of company to compete in this kind of business. In this case, the cause of long time quotation process was analyzed. A lot of product features have been demanded by customer. By checking routine processes, it was found that high fraction of quoting time was used for production time estimating which has effected to the manufacturing or production cost. Then the historical data of products including types, number of components, assembling method, and their assembling time were used to analyze the key components affecting to production time. The price quoting model then was proposed. The implementation of proposed model was able to remarkably reduce quoting time with an acceptable required precision.

Keywords: Price quoting, Contract manufacturer, Stepwise technique, Best subset technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431
494 Determination of a Fair Price for Blood Transportation by Applying the Vehicle Routing Problem: A Case for National Blood Center, Thailand

Authors: S. Pathomsiri, P. Sukaboon

Abstract:

The National Blood Center, Thai Red Cross Society is responsible for providing blood to hospitals all over the country. When any hospital needs blood, it will have to send the vehicle to pick up at the NBC. There are a lot of vehicles to pick up blood at the NBC every day. Each vehicle is usually empty for inbound trip and a little loaded for outbound. The NBC realized such waste or loss and there have been the third party offered to distribute blood and charge for fee. This paper proposes to apply the vehicle routing problem (VRP) for estimating the fair price. The idea is tested with the real data during seven-day period of 6 – 12 July 2010 to estimate the fair price for transporting blood in Bangkok Metropolitan Region.

Keywords: Blood Supply Chain, Vehicle Routing Problem, Heuristic, Saving Algorithm, Fair Price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
493 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
492 Understanding the Influence of Sensory Attributes on Wine Price: Case study of Pinot Noir Wines

Authors: Jingxian An, Wei Yu

Abstract:

The commercial value (retail price) of wine is mostly determined by the wine quality, ageing potential, and oak influence. This paper reveals that wine quality, ageing potential, and oak influence are favourably correlated, hence positively influencing the commercial value of Pinot noir wines. Oak influence is the most influential of these three sensory attributes on the price set by wine traders and estimated by experienced customers. In the meanwhile, this study gives winemakers with chemical instructions for raising total phenolics, which can improve wine quality, ageing potential, and oak influence, all of which can increase a wine’s economic worth.

Keywords: Retail price, ageing potential, wine quality, oak influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411
491 Forecasting Stock Price Manipulation in Capital Market

Authors: F. Rahnamay Roodposhti, M. Falah Shams, H. Kordlouie

Abstract:

The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.

Keywords: Price Manipulation, Liquidity, Size of Company, Floating Stock, Information Clarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
490 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
489 Evaluating the Effect of Domestic Price on Rice Production in an African Setting: A Typical Evidence of the Sierra Leone Case

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Alfred V Gborie

Abstract:

Rice, which is the staple food in Sierra Leone, is consumed on a daily basis. It is the most imperative food crop extensively grown by farmers across all ecologies in the country. Though much attention is now given to rice grain production through the small holder commercialization programme (SHCP), however, no attention has been given in investigating the limitations faced by rice producers. This paper will contribute to attempts to overcome the development challenges caused by food insecurity. The objective of this paper is thus, to analysis the relationship between rice production and the domestic retail price of rice. The study employed a log linear model in which, the quantity of rice produced is the dependent variable, quantity of rice imported, price of imported rice and price of domestic rice as explanatory variables. Findings showed that, locally produced rice is even more expensive than the imported rice per ton, and almost all the inhabitants in the capital city which hosts about 65% of the entire population of the country favor imported rice, as it is free from stones with other impurities. On the other hand, to control price and simultaneously increase rice production, the government should purchase the rice from the farmers and then sell to private retailers.

Keywords: Domestic price of rice, Econometric model, Rice production, Sierra Leone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
488 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

Authors: Kenneth M. Oba

Abstract:

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
487 Optimal Prices under Revenue Sharing Contract in a Supply Chain with Direct Channel

Authors: Aussadavut Dumrongsiri

Abstract:

Westudy a dual-channel supply chain under decentralized setting in which manufacturer sells to retailer and to customers directly usingan online channel. A customer chooses the purchase-channel based on price and service quality. Also, to buy product from the retail store, the customer incurs a transportation cost influenced by the fluctuating gasoline cost. Both companies are under the revenue sharing contract. In this contract the retailer share a portion of the revenue to the manufacturer while the manufacturer will charge the lower wholesales price. The numerical result shows that the effects of gasoline costs, the revenue sharing ratio and the wholesale price play an important role in determining optimal prices. The result shows that when the gasoline price fluctuatesthe optimal on-line priceis relatively stable while the optimal retail price moves in the opposite direction of the gasoline prices.

Keywords: direct-channel, e-business, pricing model, dualchannel supply chain, gasoline cost, revenue sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
486 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
485 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey andanalysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: Regional brands, quality products, characteristics of quality, quality over price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
484 Household Demand for Solid Waste Disposal Options in Malaysia

Authors: Pek Chuen-Khee, Jamal Othman

Abstract:

This paper estimates the economic values of household preference for enhanced solid waste disposal services in Malaysia. The contingent valuation (CV) method estimates an average additional monthly willingness-to-pay (WTP) in solid waste management charges of Ôé¼0.77 to 0.80 for improved waste disposal services quality. The finding of a slightly higher WTP from the generic CV question than that of label-specific, further reveals a higher WTP for sanitary landfill, at Ôé¼0.90, than incineration, at Ôé¼0.63. This suggests that sanitary landfill is a more preferred alternative. The logistic regression estimation procedure reveals that household-s concern of where their rubbish is disposed, age, ownership of house, household income and format of CV question are significant factors in influencing WTP.

Keywords: contingent valuation, logistic regression, solid waste disposal, willingness-to-pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
483 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
482 Empirical Evidence on Equity Valuation of Thai Firms

Authors: Somchai Supattarakul, Anya Khanthavit

Abstract:

This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.

Keywords: Dividend Discount Model, Equity Valuation Model, Residual Income Model, Thai Stock Market

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
481 Analysis of Behaviour of Real Estate Rates in India- A Case Study of Pune City

Authors: Sayali Sandbhor, Ravindra Bapat, N. B. Chaphalkar

Abstract:

Decisions for investment, buying and selling of properties depend upon the market value of that property. Issues arise in arriving at the actual value of the property as well as computing the rate of returns from the estate. Addressing valuation related issues through an understanding of behavior of real property rates provide the means to explore the quality of past decisions and to make valid future decisions. Pune, an important city in India, has witnessed a high rate of growth in past few years. Increased demand for housing and investment in properties has led to increase in the rates of real estate. An attempt has been made to study the change and behavior of rates of real estate and factors influencing the same in Pune city.

Keywords: Real estate, valuation, property rates, trend analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9173
480 Exit Strategies from The Global Crisis

Authors: Petr Teply

Abstract:

While the form of crises may change, their essence remains the same (such as a cycle of abundant liquidity, rapid credit growth, and a low-inflation environment followed by an asset-price bubble). The current market turbulence began in mid-2000s when the US economy shifted to imbalanced both internal and external macroeconomic positions. We see two key causes of these problems – loose US monetary policy in early 2000s and US government guarantees issued on the securities by government-sponsored enterprises what was further fueled by financial innovations such as structured credit products. We have discovered both negative and positive lessons deriving from this crisis and divided the negative lessons into three groups: financial products and valuation, processes and business models, and strategic issues. Moreover, we address key risk management lessons and exit strategies derived from the current crisis and recommend policies that should help diminish the negative impact of future potential crises.

Keywords: exist strategy, global crisis, risk management, corporate governance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
479 Factors Affecting Consumers’ Willingness to Pay for Chicken Meat from Biosecure Farms

Authors: Veronica Sri Lestari, Asmuddin Natsir, Hasmida Karim, Ian Patrick

Abstract:

The research aimed at investigating the factors affecting consumers’ willingness to pay for chicken meat from biosecure farms. The research was conducted in Makassar City, South Sulawesi Province, Indonesia. Samples were taken using random sampling technique in two supermarkets namely Lotte Mart and Gelael. Total samples were 50 respondents which comprised the chicken meat consumers. To find out the consumers’ willingness to pay for chicken meat from the biosecure farms, the contingent valuation method was utilized. Data were collected through interviews and questionnaires. Probit Logistic was estimated to examine the factors affecting the consumers’ willingness to pay for at the premium price for chicken meat from the biosecure farms. The research indicates that the education and income affect significantly the consumers’ willingness to pay for chicken meat from the biosecure farms (P < 0.05). The results of the study will be beneficial for the policy makers, producers, consumers and those conducting research.

Keywords: Biosecure, chicken, farms, consumer, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
478 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
477 Economic Factors Affecting Rice Export of Thailand

Authors: Somphoom Sawaengkun

Abstract:

The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.

Keywords: Economic Factors, Rice Export, White Rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3496
476 Utilizing Dutch Auction in an Agent-based Model E-commerce System

Authors: Costin Badica, Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej, Marcin Paprzycki

Abstract:

Recently, we have presented an initial implementation of a model agent-based e-commerce system, which utilized a simple price negotiation mechanism–English Auction. In this note we discuss how a Dutch Auction involving multiple units of a product can be included in our system. We present UML diagrams of agents involved in price negotiations and briefly discuss rule-based mechanism exemplifying Dutch Auction.

Keywords: e-commerce, rule-based price negotiation mechanism, Dutch Auction, agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
475 Retail Inventory Management for Perishable Products with Two Bins Strategy

Authors: Madhukar Nagare, Pankaj Dutta, Amey Kambli

Abstract:

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

Keywords: Retail Inventory, Perishable Products, Two Bin, Profitable Sales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509