Search results for: singular perturbations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 274

Search results for: singular perturbations

274 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 156
273 Rough Oscillatory Singular Integrals on Rⁿ

Authors: H. M. Al-Qassem, L. Cheng, Y. Pan

Abstract:

In this paper we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log(deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Among key ingredients of our methods are an L¹→L² estimate and extrapolation.

Keywords: oscillatory singular integral, rough kernel, singular integral, Orlicz spaces, Block spaces, extrapolation, L^{p} boundedness

Procedia PDF Downloads 358
272 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Authors: Mehmet Bozca

Abstract:

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (µmax and µmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

Keywords: Singular value, optimisation, gearbox, torsional vibration

Procedia PDF Downloads 360
271 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations

Procedia PDF Downloads 148
270 Sharp Estimates of Oscillatory Singular Integrals with Rough Kernels

Authors: H. Al-Qassem, L. Cheng, Y. Pan

Abstract:

In this paper, we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log (deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Our results substantially improve many previously known results. Among key ingredients of our methods are an L¹→L² sharp estimate and using extrapolation.

Keywords: oscillatory singular integral, rough kernel, singular integral, orlicz spaces, block spaces, extrapolation, L^{p} boundedness

Procedia PDF Downloads 459
269 The Norm, Singular Value and Condition Number Analysis for the Hadamard Matrices

Authors: Emine Tuğba Akyüz

Abstract:

In this study, the analysis of Hadamard matrices, which is a special type of matrix, was made under three headings: norms, singular values, condition number. Six norm types was applied to Hadamard matrices and the relationship between the results and the size of the matrix has been studied. As a result of the investigation when 2-norm was used on the problem Hx =f, the equation ‖x‖_2= ‖f‖_2/√n was shown (H is n-dimensional Hadamard matrix). Related with this, the relationship between the the singular value of H and 2-norm and eigenvalues was shown. Then, the evaluation of condition number for Hx =f was made.

Keywords: condition number, Hadamard matrix, norm, singular value

Procedia PDF Downloads 343
268 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm

Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang

Abstract:

Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.

Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR

Procedia PDF Downloads 120
267 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting

Authors: Kourosh Modarresi

Abstract:

The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.

Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation

Procedia PDF Downloads 458
266 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 444
265 Non−zero θ_13 and δ_CP phase with A_4 Flavor Symmetry and Deviations to Tri−Bi−Maximal mixing via Z_2 × Z_2 invariant perturbations in the Neutrino sector.

Authors: Gayatri Ghosh

Abstract:

In this work, a flavour theory of a neutrino mass model based on A_4 symmetry is considered to explain the phenomenology of neutrino mixing. The spontaneous symmetry breaking of A_4 symmetry in this model leads to tribimaximal mixing in the neutrino sector at a leading order. We consider the effect of Z_2 × Z_2 invariant perturbations in neutrino sector and find the allowed region of correction terms in the perturbation matrix that is consistent with 3σ ranges of the experimental values of the mixing angles. We study the entanglement of this formalism on the other phenomenological observables, such as δ_CP phase, the neutrino oscillation probability P(νµ → νe), the effective Majorana mass |mee| and |meff νe |. A Z_2 × Z_2 invariant perturbations in this model is introduced in the neutrino sector which leads to testable predictions of θ_13 and CP violation. By changing the magnitudes of perturbations in neutrino sector, one can generate viable values of δ_CP and neutrino oscillation parameters. Next we investigate the feasibility of charged lepton flavour violation in type-I seesaw models with leptonic flavour symmetries at high energy that leads to tribimaximal neutrino mixing. We consider an effective theory with an A_4 × Z_2 × Z_2 symmetry, which after spontaneous symmetry breaking at high scale which is much higher than the electroweak scale leads to charged lepton flavour violation processes once the heavy Majorana neutrino mass degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. In this context the implications for charged lepton flavour violation processes like µ → eγ, τ → eγ, τ → µγ are discussed.

Keywords: Z2 × Z2 invariant perturbations, CLFV, delta CP phase, tribimaximal neutrino mixing

Procedia PDF Downloads 80
264 Encryption Image via Mutual Singular Value Decomposition

Authors: Adil Al-Rammahi

Abstract:

Image or document encryption is needed through e- government data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.

Keywords: image cryptography, singular values decomposition

Procedia PDF Downloads 439
263 Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip

Authors: Ikram Slamani, Hicheme Ferdjani

Abstract:

This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings.

Keywords: center crack, Chebyshev polynomial, hyper singular integral equation, Griffith, infinite strip, stress intensity factor

Procedia PDF Downloads 145
262 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 113
261 Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas

Authors: Victor I. Ilgisonis, Ludmila V. Konovaltseva, Vladimir P. Lakhin, Ekaterina A. Sorokina

Abstract:

The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed.

Keywords: tokamak, MHD, geodesic acoustic mode, eigenmode

Procedia PDF Downloads 737
260 Existence and Uniqueness of Solutions to Singular Higher Order Two-Point BVPs on Time Scales

Authors: Zhenjie Liu

Abstract:

This paper investigates the existence and uniqueness of solutions for singular higher order boundary value problems on time scales by using mixed monotone method. The theorems obtained are very general. For the different time scale, the problem may be the corresponding continuous or discrete boundary value problem.

Keywords: mixed monotone operator, boundary value problem, time scale, green's function, positive solution, singularity

Procedia PDF Downloads 257
259 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 279
258 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 178
257 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
256 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 156
255 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 158
254 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software

Authors: Pasala Gopi, P. Linga Reddy

Abstract:

The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations

Keywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system

Procedia PDF Downloads 644
253 Spline Solution of Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 296
252 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values

Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie

Abstract:

Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.

Keywords: initial input, iterative learning control, maximum input, singular values

Procedia PDF Downloads 244
251 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark

Procedia PDF Downloads 276
250 Exponential Spline Solution for Singularly Perturbed Boundary Value Problems with an Uncertain-But-Bounded Parameter

Authors: Waheed Zahra, Mohamed El-Beltagy, Ashraf El Mhlawy, Reda Elkhadrawy

Abstract:

In this paper, we consider singular perturbation reaction-diffusion boundary value problems, which contain a small uncertain perturbation parameter. To solve these problems, we propose a numerical method which is based on an exponential spline and Shishkin mesh discretization. While interval analysis principle is used to deal with the uncertain parameter, sensitivity analysis has been conducted using different methods. Numerical results are provided to show the applicability and efficiency of our method, which is ε-uniform convergence of almost second order.

Keywords: singular perturbation problem, shishkin mesh, two small parameters, exponential spline, interval analysis, sensitivity analysis

Procedia PDF Downloads 275
249 Cyclic Evolution of a Two Fluid Diffusive Universe

Authors: Subhayan Maity

Abstract:

Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] .

Keywords: non-equilibrium thermodynamics, non singular evolution of universe, cyclic evolution, diffusive fluid

Procedia PDF Downloads 141
248 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 200
247 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 362
246 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 592
245 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 106