Search results for: motion parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3196

Search results for: motion parameter

3166 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: human motion capture, computer vision, vision-based, tracking

Procedia PDF Downloads 291
3165 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 459
3164 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 386
3163 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization

Procedia PDF Downloads 333
3162 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 190
3161 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 343
3160 Efficient Motion Estimation by Fast Three Step Search Algorithm

Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar

Abstract:

The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.

Keywords: block matching, exhaustive search motion estimation, three step search, video compression

Procedia PDF Downloads 455
3159 A Study on the Establishment of a 4-Joint Based Motion Capture System and Data Acquisition

Authors: Kyeong-Ri Ko, Seong Bong Bae, Jang Sik Choi, Sung Bum Pan

Abstract:

A simple method for testing the posture imbalance of the human body is to check for differences in the bilateral shoulder and pelvic height of the target. In this paper, to check for spinal disorders the authors have studied ways to establish a motion capture system to obtain and express motions of 4-joints, and to acquire data based on this system. The 4 sensors are attached to the both shoulders and pelvis. To verify the established system, the normal and abnormal postures of the targets listening to a lecture were obtained using the established 4-joint based motion capture system. From the results, it was confirmed that the motions taken by the target was identical to the 3-dimensional simulation.

Keywords: inertial sensor, motion capture, motion data acquisition, posture imbalance

Procedia PDF Downloads 486
3158 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility

Procedia PDF Downloads 131
3157 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data

Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.

Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI

Procedia PDF Downloads 180
3156 Nonuniformity of the Piston Motion in a Radial Aircraft Engine

Authors: K. Pietrykowski, M. Bialy, M. Duk

Abstract:

One of the main disadvantages of radial engines is non-uniformity of operating cycles of each cylinder. This paper discusses the results of the kinematic analysis of pistons motion of the ASz-62IR radial engine. The ASz-62IR engine is produced in Poland and mounted in the M-18 Dromader and the An-2. The results are shown as the courses of the motion of the pistons. The discrepancies in the courses for individual pistons can result in different masses of the charge to fill the cylinders. Besides, pistons acceleration of individual cylinders is different, which triggers an additional vibration in the engine.

Keywords: nonuniformity, kinematic analysis, piston motion, radial engine

Procedia PDF Downloads 357
3155 Priority of Goal Over Source in Persian Directional Motion Verbs

Authors: Tahereh Samenian

Abstract:

There is ample evidence that source and goal are disproportionately expressed in languages, and goal usually plays a more prominent role than source. The results show that the mismatch between the goal and the source is not entirely rooted in non-linguistic behaviors, i.e. that linguistic descriptions also show the focus of the goal on the source in events; Non-verbal memory for events, on the other hand, indicates that the focus of the goal is only on events that are purposefully moving and the actor is alive. In the present study, an attempt is made to examine the principle of priority of the goal over the source by focusing on Persian directional motion verbs. For this purpose, 117 Persian directional motion verbs have been selected from the dictionary and data for them have been collected from the body of Bijan Khan and the components of goal and source have been identified in sentences and the prominence of the components of goal and source has been shown in the form of diagrams. As it was obtained from the data, Persian motion-directional verbs also showed the bias of the goal over source in motion events.

Keywords: motion-directional verbs, priority of goal over source principle, cognitive factors, linguistic factors

Procedia PDF Downloads 62
3154 Development of 4D Dynamic Simulation Tool for the Evaluation of Left Ventricular Myocardial Functions

Authors: Deepa, Yashbir Singh, Shi Yi Wu, Michael Friebe, Joao Manuel R. S. Tavares, Hu Wei-Chih

Abstract:

Cardiovascular disease can be detected by measuring the regional and global wall motion of the left ventricle (LV) of the heart; In this study, we designed a dynamic simulation tool using Computed Tomography (CT) images to assess the difference between actual and simulated left ventricular functions. Thirteen healthy subjects were involved in the study with actual and simulated left ventricular functions. In this research, we found the high correlation between actual left ventricular wall motion and simulated left ventricular wall motion. Our results confirm that our simulation tool is feasible for simulating left ventricular motion.

Keywords: cardiac imaging, left-ventricular remodeling, cardiac wall motion, myocardial functions

Procedia PDF Downloads 319
3153 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 265
3152 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 50
3151 Basic Properties of a Fundamental Particle: Behavioral-Physical and Visual Methods for the Study of Fundamental Particle

Authors: Shukran M. Dadayev

Abstract:

To author's best knowledge, in this paper, the Basic Properties and Research methods of a Fundamental Particle is studied for the first time. That's to say, Fundamental Particle has not been discovered in the Nature yet. Because Fundamental Particle consists of specific Physical, Geometrical and Internal bases. Geometrical and Internal characteristics that are considered significant for the elementary and fundamental particles aren’t basic properties, characteristics or criteria of a Fundamental Particle. Of course, completely new Physical and Visual experimental methods of Quantum mechanics and Behavioral-Physical investigations of Particles are needed to study and discover the Fundamental Particle. These are new Physical, Visual and Behavioral-Physical experimental methods for describing and discovering the Fundamental Particle in the Nature and Microworld. Fundamental Particle consists of the same Energy-Mass-Motion system and a symmetry of Energy-Mass-Motion. Fundamental Particle supplies each of the elementary particles with the same Energy-Mass-Motion system at the same time and regulates each of the particles. Fundamental Particle gives Energy, Mass and Motion to each particles at the same time, each of the Particles consists of acquired Energy-Mass-Motion system and symmetry. Energy, Mass, Motion given by the Fundamental Particle to the particles are Symmetrical Equivalent and they remain in their primary shapes in all cases. Fundamental Particle gives Energy-Mass-Motion system and symmetry consisting of different measures and functions to each of the particles. The Motion given by the Fundamental Particle to the particles is Gravitation, Gravitational Interaction not only gives Motion, but also cause Motion by attracting. All Substances, Fields and Cosmic objects consist of Energy-Mass-Motion. The Field also includes specific Mass. They are always Energetic, Massive and Active. Fundamental Particle establishes the bases of the Nature. Supplement and Regulating of all the particles existing in the Nature belongs to Fundamental Particle.

Keywords: basic properties of a fundamental particle, behavioral-physical and visual methods, energy-mass-motion system and symmetrical equivalence, fundamental particle

Procedia PDF Downloads 3450
3150 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 298
3149 Plantation Forests Height Mapping Using Unmanned Aerial System

Authors: Shiming Li, Qingwang Liu, Honggan Wu, Jianbing Zhang

Abstract:

Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping.

Keywords: forest height mapping, plantation forests, structure-from-motion photogrammetry, UAS

Procedia PDF Downloads 242
3148 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 374
3147 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 117
3146 Application of the Motion Analysis System to Formulate Parameters Defining the Movement of the Upper Limbs during Various Types of Gait

Authors: Agata Matuszewska, Małgorzata Syczewska

Abstract:

The movement of the upper limbs contributes significantly to balance control while walking in humans. However, the impact of different arm swing modes on gait stability is yet to be determined. This work intends to establish numerical parameters for assessing the arm swing. Nineteen people, comprising fifteen young, healthy individuals, two middle-aged individuals, and two individuals with dysfunctions, were analyzed using the movement analysis system. Proposed parameters such as ASᵢₐ (reflecting the arm swing amplitude) and Pearson’s correlation coefficient between the right and left upper limbs can be used to classify the type of movement task each participant performs. The results indicate that the ASᵢₐ parameter could potentially detect any abnormalities in upper limb functions, which may be due to musculoskeletal disorders or other malfunctions.

Keywords: arm swing, human balance, interlimb coordination, motion analysis system

Procedia PDF Downloads 135
3145 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin

Abstract:

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping

Procedia PDF Downloads 485
3144 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 386
3143 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs

Authors: Kim Duc Hoang, Hyeong Joon Ahn

Abstract:

Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.

Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring

Procedia PDF Downloads 316
3142 Calculation of Lungs Physiological Lung Motion in External Lung Irradiation

Authors: Yousif Mohamed Y. Abdallah, Khalid H. Eltom

Abstract:

This is an experimental study deals with measurement of the periodic physiological organ motion during lung external irradiation in order to reduce the exposure of healthy tissue during radiation treatments. The results showed for left lung displacement reading (4.52+1.99 mm) and right lung is (8.21+3.77 mm) which the radiotherapy physician should take suitable countermeasures in case of significant errors. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, the calculation of tumour mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a high resolution CT scan with a margin of 3-5 mm is appropriate.

Keywords: physiological motion, lung, external irradiation, radiation medicine

Procedia PDF Downloads 384
3141 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 159
3140 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 471
3139 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 127
3138 Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure

Authors: Tauhidur Rahman, Gitartha Kalita

Abstract:

In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind.

Keywords: ground motion, response, rotational effects, translational effects

Procedia PDF Downloads 415
3137 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation

Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan

Abstract:

Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.

Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform

Procedia PDF Downloads 274