Search results for: local cost computation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11534

Search results for: local cost computation

11534 Evaluating the Cost of Quality: A Case Study of a South African Foundry Business

Authors: Chipo Mugova, Zuko Mjobo

Abstract:

The aim of this study was to evaluate the cost of quality (COQ) at a local foundry business to identify the contribution of its units and processes to quality costs within the foundry’s operations. The foundry selected for detailed case study is one of major businesses that have been targeted by the government to produce components for building and re-furbishing wagons and trains. The study aimed at identifying areas in the foundry’s processes in which investment needs to be made to reduce quality costs. This is in alignment with government’s vision of promoting local business to support local markets leading to creation of jobs, and hence reduction of unemployment rate in South Africa. The methodology adopted used cost of quality models. Results from the study indicated that internal failure costs were significantly higher than all other cost of quality categories, taking more than 60% of the business’s income.

Keywords: appraisal costs, cost of quality, failure costs, local content, prevention costs

Procedia PDF Downloads 339
11533 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 349
11532 Verifiable Secure Computation of Large Scale Two-Point Boundary Value Problems Using Certificate Validation

Authors: Yogita M. Ahire, Nedal M. Mohammed, Ahmed A. Hamoud

Abstract:

Scientific computation outsourcing is gaining popularity because it allows customers with limited computing resources and storage devices to outsource complex computation workloads to more powerful service providers. However, it raises some security and privacy concerns and challenges, such as customer input and output privacy, as well as cloud cheating behaviors. This study was motivated by these concerns and focused on privacy-preserving Two-Point Boundary Value Problems (BVP) as a common and realistic instance for verifiable safe multiparty computing. We'll look at the safe and verifiable schema with correctness guarantees by utilizing standard multiparty approaches to compute the result of a computation and then solely using verifiable ways to check that the result was right.

Keywords: verifiable computing, cloud computing, secure and privacy BVP, secure computation outsourcing

Procedia PDF Downloads 96
11531 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 95
11530 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 116
11529 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 333
11528 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G= (V, E, D, P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances/cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one.

Keywords: bi-criteria, pollution, shortest paths, computation

Procedia PDF Downloads 373
11527 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods

Procedia PDF Downloads 283
11526 Dissociation of CDS from CVA Valuation Under Notation Changes

Authors: R. Henry, J-B. Paulin, St. Fauchille, Ph. Delord, K. Benkirane, A. Brunel

Abstract:

In this paper, the CVA computation of interest rate swap is presented based on its rating. Rating and probability default given by Moody’s Investors Service are used to calculate our CVA for a specific swap with different maturities. With this computation, the influence of rating variation can be shown on CVA. The application is made to the analysis of Greek CDS variation during the period of Greek crisis between 2008 and 2011. The main point is the determination of correlation between the fluctuation of Greek CDS cumulative value and the variation of swap CVA due to change of rating

Keywords: CDS, computation, CVA, Greek crisis, interest rate swap, maturity, rating, swap

Procedia PDF Downloads 308
11525 Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation

Authors: Jatindranath Gain, Madhumita DasSarkar, Sudakshina Kundu

Abstract:

Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation.

Keywords: quantum computing, quasicrystals, Multiple Quantum wells (MQWs), transfer matrix method, fibonacci anyons, quantum hall effect, nanophotonics

Procedia PDF Downloads 388
11524 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 412
11523 Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation

Authors: Muhammad Younis

Abstract:

In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.

Keywords: traveling wave solutions, NLPDE, computation, integrability

Procedia PDF Downloads 432
11522 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters

Authors: J. García-Pérez

Abstract:

An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.

Keywords: importance factors, optimum parameters, seismic losses, seismic risk, total cost

Procedia PDF Downloads 284
11521 Industrial Management of Highland Community: The Hmong Ethnic Group Hill Tribe, Phetchabun Province

Authors: Kusuma Palaprom

Abstract:

The aims of this research are: 1) to study Hmong ethnic group hill tribe’s way of life and community industrial management and 2) to bring the industrial management into the community. This is a Participatory Action Research (PAR) using qualitative and quantitative data. The findings are: 1) Way of living and learning from nature of Hmong ethnic group hill tribe bases on their cultural relic belief. Hmong‘s way of life or occupation is traditional agriculture which cannot be business because they cannot adopt the industrial management to the community economic innovation base on local wisdom. 2) Quality of life development using local wisdom cost is not worth. Hmong ethnic group hill tribe are lack of modern knowledge-managerial aspect and the application of local wisdom cost and 3) the government supports for Hmong’s developing of life quality are limited. Solving problem guidelines are: 1) to create awareness of ethnic group wisdom-industrial conservation. 2) Government policy need to give an opportunity and motivate ethnic group community to do the cultural-industrial conservation with industrial management process and local wisdom cost. In order to, improve the sustainability of quality of life.

Keywords: industrial management, highland community, community empowerment ethnic group

Procedia PDF Downloads 569
11520 Monitoring System for Electronic Procurement Systems

Authors: Abdulah Fajar

Abstract:

Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.

Keywords: procurement system, SNMP, LKPP, LPSE

Procedia PDF Downloads 425
11519 Symbolic Computation on Variable-Coefficient Non-Linear Dispersive Wave Equations

Authors: Edris Rawashdeh, I. Abu-Falahah, H. M. Jaradat

Abstract:

The variable-coefficient non-linear dispersive wave equation is investigated with the aid of symbolic computation. By virtue of a newly developed simplified bilinear method, multi-soliton solutions for such an equation have been derived. Effects of the inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed with the aid of the characteristic curve method and graphical analysis.

Keywords: dispersive wave equations, multiple soliton solution, Hirota Bilinear Method, symbolic computation

Procedia PDF Downloads 454
11518 Analysis of Risk-Based Disaster Planning in Local Communities

Authors: R. A. Temah, L. A. Nkengla-Asi

Abstract:

Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.

Keywords: capabilities, disaster planning, hazards, local community, risk-based

Procedia PDF Downloads 204
11517 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram

Abstract:

The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.

Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems

Procedia PDF Downloads 355
11516 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 121
11515 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: colour data, local stereo matching, stereo correspondence, disparity map

Procedia PDF Downloads 369
11514 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 201
11513 Reliability-Based Life-Cycle Cost Model for Engineering Systems

Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski

Abstract:

The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.

Keywords: initial cost, life-cycle cost, maintenance cost, reliability

Procedia PDF Downloads 603
11512 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems

Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang

Abstract:

There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.

Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core

Procedia PDF Downloads 144
11511 Potential Contribution of Local Food Resources towards Sustainable Food Tourism in Nueva Vizcaya

Authors: Marvin Eslava

Abstract:

The over-arching aim of this research is to determine the potential contribution of local food resources to the tourism growth of Nueva Vizcaya. It reviews some of the underpinning concepts and to provide a set of considerations for stakeholders to maximize the opportunity of local food can offer to businesses and the wider community. The basis of the study is to develop a sustainable food tourism model for Nueva Vizcaya. For the purpose of this research, there were 60 total numbers of respondents classified as samples from a six municipality. The respondents of the study were stakeholder consisting of government official, local producers, businessman and Non-government organizations in the selected municipalities of Nueva Vizcaya. Stratified purposive sampling was the appropriate technique that was used to the local government officials and employees, NGOs including the businessmen who are associated with local food resources and local producers. The documentary study, focus group discussion and survey questionnaire was used in order to meet the objectives of the study. Kruskall Wallis test was used to test the variances the ratings of the participants. This was used in the computation of hypothesis. The study concluded that the province of Nueva Vizcaya is blessed for its rich farmlands and fertile mountain soil boasts to produce high quality agricultural products. It is a home of various different indigenous groups creating a wide range of local cuisine. The province has substantial local food development evidence by the various food tourism related resources, increase in facilities and celebrating food tourism related events. The local food resources provide extensive potential economic empowerment and help in building the identity of the province. In addition, the local food resources extensively enhance the agriculture sector and other attractions in the province. Finally, it helps to preserve the authenticity of the food culture and generated pride among all stakeholders extensively. All stakeholders have the same perception on the potential contribution of local food resources to the development of the province of Nueva Vizcaya. The public and private sectors are cognizant on their roles to support the production of local food resources in Nueva Vizcaya. Major challenges and barriers in the development of sustainable food tourism in Nueva Vizcaya include production or supply and marketing.

Keywords: local food resources, contribution, food tourism, benefits

Procedia PDF Downloads 261
11510 Exploring the Intersection of Categorification and Computation in Algebraic Combinatorial Structures

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study explores the intersection of categorification and computation within algebraic combinatorial structures, aiming to deepen the understanding of how categorical frameworks can enhance computational methods. We investigate the role of higher-dimensional categories in organizing and analyzing combinatorial data, revealing how these structures can lead to new computational techniques for solving complex problems in algebraic combinatory. By examining examples such as species, posets, and operads, we illustrate the transformative potential of categorification in generating new algorithms and optimizing existing ones. Our findings suggest that integrating categorical insights with computational approaches not only enriches the theoretical landscape but also provides practical tools for tackling intricate combinatorial challenges, ultimately paving the way for future research in both fields.

Keywords: categorification, computation, algebraic structures, combinatorics

Procedia PDF Downloads 14
11509 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application

Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui

Abstract:

Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.

Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling

Procedia PDF Downloads 282
11508 The Economics of Ecosystem Services and Biodiversity: Valuing Ecotourism-Local Perspectives to Global Discourses-Stakeholders’ Analysis

Authors: Diptimayee Nayak

Abstract:

Ecotourism has been recognised as a popular component of alternative tourism, which claims to guard host local environment and economy. This concept of ecological tourism (eco-tourism) has become more meaningful in evaluating the recreational function and services of any pristine ecosystem in context of ‘The Economics of Ecosystem and Biodiversity (TEEB)’. This ecotourism is said to be a local solution to the global problem of conserving ecosystems and optimising the utilisations of their services. This paper takes a case of recreational services of an Indian protected area ecosystems ‘Bhitarakanika mangrove protected area’ discussing how ecotourism is functioning taking the perspectives of different stakeholders. Specific stakeholders are taken for analysis, viz., tourists and local people, as they are believed to be the major beneficiaries of ecotourism. The stakeholders’ analysis is evaluated on the basis of travel cost techniques (by using truncated Poisson distribution model) for tourists and descriptive and analytical tools for local people. The evaluation of stakeholders’ analysis of ecotourism has gained its impetus after the formulation of Ecotourism guidelines by the Ministry of Environment and Forest (MoEF), Government of India. The paper concludes that ecotourism issues and challenges are site-specific and region-specific; without critically focussing challenges of ecotourism faced at local level the discourses of ecotourism at global level cannot be tackled. Mere integration and replication of policies at global level to be followed at local level will not be successful (top down policies). Rather mainstreaming the decision making process at local level with the global policy stature helps to solve global issues to a bigger extent (bottom up).

Keywords: ecosystem services, ecotourism, TEEB, economic valuation, stakeholders, travel cost techniques

Procedia PDF Downloads 248
11507 Intended and Unintended Outcomes of Partnerships at the Local Level in Slovakia

Authors: Daniel Klimovský

Abstract:

Slovakia belongs to the most fragmented countries if one looks at its local government structure. The Slovak central governments implemented both broad devolution and fiscal decentralization some decades ago. However, neither territorial consolidation nor size categorization of local competences and powers has been implemented yet. Taking this fact into account, it is clear that the local governments are challenged not only by their citizens as customers but also by effectiveness as well as efficiency of delivered services. The paper is focused on behavior of the local governments in Slovakia and their approaches towards other local partners, including other local governments. Analysis of set of interviews shows that inter-municipal cooperation is the most common local partnership in Slovakia, but due to diversity of the local governments, this kind of cooperation leads to both intended and unintended outcomes. While in many cases the local governments are more efficient as well as effective in delivery of local services thanks to inter-municipal cooperation, there are many cases where inter-municipal cooperation fails, and it brings rather questionable or even negative outcomes.

Keywords: local governments, local partnerships, inter-municipal cooperation, delivery of local services

Procedia PDF Downloads 260
11506 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 311
11505 Changing Trends in the Use of Induction Agents for General Anesthesia for Cesarean Section

Authors: Mahmoud Hassanin, Amita Gupta

Abstract:

Background: During current practice, Thiopentone is not cost-effectively added to resources wastage, risk of drug error with antibiotics, short shelf life, infection risk, and risk of delay while preparing during category one cesarean section. There is no significant difference or preference to the other alternative as per current use. Aims and Objectives: Patient safety, Cost-effective use of trust resources, problem awareness, Consider improvising on the current practice. Methods: In conjunction with the local department survey results, many studies support the change. Results: More than 50%(15 from 29) are already using Propofol, more than 75% of the participant are willing to shift to Propofol if it becomes standard, and the cost analysis also revealed that Thiopentone 10 X500=£60 Propofol 10X200= £5.20, Cost of Thiopentone/year =£2190. Approximately GA in a year =35-40 could cost approximately £20 Propofol, given it is a well-established practice. We could save not only money, but it will be environmentally friendly also to avoid adding any carbon footprints. Recommendation: Thiopentone is rarely used as an induction agent for the category one Caesarean section in our obstetric emergency theatres. Most obstetric anesthetists are using Propofol. Keep both Propofol and thiopentone(powder not withdrawn) in the cat one cesarean section emergency drugs tray ready until the department completely changes the practice protocol. A further retrospective study is required to compare the outcomes for these induction agents through the local database.

Keywords: thiopentone, propofol, category 1 caesarean, induction agents

Procedia PDF Downloads 143