Search results for: coal seam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 370

Search results for: coal seam

10 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 100
9 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System

Authors: Asegid Belay Kebede, Getachew Biru Worku

Abstract:

The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.

Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit

Procedia PDF Downloads 55
8 Harnessing Renewable Energy as a Strategy to Combating Climate Change in Sub Saharan Africa

Authors: Gideon Nyuimbe Gasu

Abstract:

Sub Saharan Africa is at a critical point, experiencing rapid population growth, particularly in urban areas and young growing force. At the same time, the growing risk of catastrophic global climate change threatens to weaken food production system, increase intensity and frequency of drought, flood, and fires and undermine gains on development and poverty reduction. Although the region has the lowest per capital greenhouse gas emission level in the world, it will need to join global efforts to address climate change, including action to avoid significant increases and to encourage a green economy. Thus, there is a need for the concept of 'greening the economy' as was prescribed at Rio Summit of 1992. Renewable energy is one of the criterions to achieve this laudable goal of maintaining a green economy. There is need to address climate change while facilitating continued economic growth and social progress as energy today is critical to economic growth. Fossil fuels remain the major contributor of greenhouse gas emission. Thus, cleaner technologies such as carbon capture storage, renewable energy have emerged to be commercially competitive. This paper sets out to examine how to achieve a low carbon economy with minimal emission of carbon dioxide and other greenhouse gases which is one of the outcomes of implementing a green economy. Also, the paper examines the different renewable energy sources such as nuclear, wind, hydro, biofuel, and solar voltaic as a panacea to the looming climate change menace. Finally, the paper assesses the different renewable energy and energy efficiency as a propeller to generating new sources of income and jobs and in turn reduces carbon emission. The research shall engage qualitative, evaluative and comparative methods. The research will employ both primary and secondary sources of information. The primary sources of information shall be drawn from the sub Saharan African region and the global environmental organizations, energy legislation, policies and related industries and the judicial processes. The secondary sources will be made up of some books, journal articles, commentaries, discussions, observations, explanations, expositions, suggestions, prescriptions and other material sourced from the internet on renewable energy as a panacea to climate change. All information obtained from these sources will be subject to content analysis. The research result will show that the entire planet is warming as a result of the activities of mankind which is clear evidence that the current development is fundamentally unsustainable. Equally, the study will reveal that a low carbon development pathway in the sub Saharan African region should be embraced to minimize emission of greenhouse gases such as using renewable energy rather than coal, oil, and gas. The study concludes that until adequate strategies are devised towards the use of renewable energy the region will continue to add and worsen the current climate change menace and other adverse environmental conditions.

Keywords: carbon dioxide, climate change, legislation/law, renewable energy

Procedia PDF Downloads 193
7 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 321
6 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 314
5 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 181
4 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative

Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi

Abstract:

India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.

Keywords: integrated service hub, India, oil gas, offshore supply base

Procedia PDF Downloads 126
3 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Alessandra Swiny, Michalis Georgiou, Yiorgos Hadjichristou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out of crisis, emergent and adaptive’; an architectural research-based studio at the University of Nicosia. It focusses on sustainable architectural and urban explorations tackling with the ever growing crises in its various types, phases and locations. ‘Great crisis situations’ are seen as ‘great chances’ that trigger investigations for further development and evolution of the built environment in an ultimate sustainable approach. The crisis is taken as an opportunity to rethink the urban and architectural directions as new forces for inventions leading to emergent and adaptive built environments. The Unit 5’s identity and environment facilitates the students to respond optimistically, alternatively and creatively towards the global current crisis. Mark Wigley’s notion that “crises are ultimately productive” and “They force invention” intrigued and defined the premises of the Unit. ‘Weather and nature are coauthors of the built environment’ Jonathan Hill states in his ‘weather architecture’ discourse. The weather is constantly changing and new environments, the subnatures are created which derived from the human activities David Gissen explains. The above set of premises triggered innovative responses by the Unit’s students. They thoroughly investigated the various kinds of crisis and their causes in relation to their various types of Terrains. The tools used for the research and investigation were chosen in contradictive pairs to generate further crisis situations: The re-used/salvaged competed with the new, the handmade rivalling with the fabrication, the analogue juxtaposed with digital. Students were asked to delve into state of art technologies in order to propose sustainable emergent and adaptive architectures and Urbanities, having though always in mind that the human and the social aspects of the community should be the core of the investigation. The resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions such as: The vague terrain of the Green Line in Nicosia, the lost footprints of the sinking Venice, the endangered Australian coral reefs, the earthquake torn town of Crevalcore, and the decaying concrete urbanscape of Athens. Among other projects, ‘the plume project’ proposes a cloud-like, floating and almost dream-like living environment with unprecedented spatial conditions to the inhabitants of the coal mine of Centralia, USA, not just to enable them to survive but even to prosper in this unbearable environment due to the process of the captured plumes of smoke and heat. Existing water wells inspire inversed vertical structures creating a new living underground network, protecting the nomads from catastrophic sand storms in the Araoune of Mali. “Inverted utopia: Lost things in the sand”, weaves a series of tea-houses and a library holding lost artifacts and transcripts into a complex underground labyrinth by the utilization of the sand solidification technology. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities.

Keywords: adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions

Procedia PDF Downloads 409
2 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 223
1 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries

Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria

Abstract:

Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.

Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry

Procedia PDF Downloads 143