Search results for: Ziyun Li
3 Human Papillomavirus Type 16 E4 Gene Variation as Risk Factor for Cervical Cancer
Authors: Yudi Zhao, Ziyun Zhou, Yueting Yao, Shuying Dai, Zhiling Yan, Longyu Yang, Chuanyin Li, Li Shi, Yufeng Yao
Abstract:
HPV16 E4 gene plays an important role in viral genome amplification and release. Therefore, a variation of the E4 gene nucleic acid sequence may affect the carcinogenicity of HPV16. In order to understand the relationship between the variation of HPV16 E4 gene and cervical cancer, this study was to amplify and sequence the DNA sequences of E4 genes in 118 HPV16-positive cervical cancer patients and 151 HPV16-positive asymptomatic individuals. After obtaining E4 gene sequences, the phylogenetic trees were constructed by the Neighbor-joining method for gene variation analysis. The results showed that: 1) The distribution of HPV16 variants between the case group and the control group differed greatly (P = 0.015),and the Asian-American(AA)variant was likely to relate to the occurrence of cervical cancer. 2) DNA sequence analysis showed that there were significant differences in the distribution of 8 variants between the case group and the control group (P < 0.05). And 3) In European (EUR) variant, two variations, C3384T (L18L) and A3449G (P39P), were associated with the initiation and development of cervical cancer. The results suggested that the variation of HPV16 E4 gene may be a contributor affecting the occurrence as well as the development of cervical cancer, and different HPV16 variants may have different carcinogenic capability.Keywords: cervical cancer, HPV16, E4 gene, variations
Procedia PDF Downloads 1712 The Mediating Role of Resilience in the Association Between Stigma and Psychosocial Adjustment: A Cross-sectional Study Among Young and Middle-Aged Patients With Lung Cancer
Authors: Ziyun Li, Jiudi Zhong, June Zhang
Abstract:
Background: The diagnosis and treatment of lung cancer lead to varying degrees of psychological and social maladjustment among patients with lung cancer. Understanding psychosocial adjustment (PA) and its influencing factors in young and middle-aged lung cancer patients is essential to help them return to society and lead a normal life. Objectives: This study aims to examine the mediating role of resilience in the association between stigma and psychosocial adjustment among young and middle-aged patients with lung cancer. Methods: A total of 235 patients with lung cancer were recruited from a tertiary grade A cancer center in southern China and investigated using a self-designed general information questionnaire, Psychosocial Adjustment to Illness Scale Self-Report, Social Impact Scale, and Conner-Davidson Resilience Scale. Results: The mean score of PA was (32.61±14.75), and its influencing factors included treatment modalities, stigma, and resilience. The total effect of stigma on PA was significant (total effect=0.418, SE=0.045, 95%CI [0.310-0.497]), and a positive indirect effect was identified for stigma on PA via resilience (indirect effect=0.143, SE=0.041, 95% CI [0.075-0.236]). Conclusion: Stigma and resilience are significantly associated with PA, and resilience is also a mediating variable between stigma and PA. This study suggests that individualized interventions can be made to improve the PA by alleviating their stigma, or by enhancing their resilience in young and middle-aged lung cancer patients.Keywords: psychosocial adjustment, lung cancer, cancer caring, nursing, young and middle-aged
Procedia PDF Downloads 901 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza
Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue
Abstract:
Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.Keywords: COVID-19, Fastai, influenza, transfer network
Procedia PDF Downloads 142