Search results for: Yuhan Wu
6 Developing Metaverse Initiatives: Insights from a University Case Study
Authors: Jiongbin Liu, William Yeoh, Shang Gao, Xiaoliang Meng, Yuhan Zhu
Abstract:
The metaverse concept has sparked significant interest in both academic and industrial spheres. As educational institutions increasingly adopt this technology, understanding its implementation becomes crucial. In response, we conducted a comprehensive case study at a large university, systematically analyzing the nine stages of metaverse development initiatives. Our study unveiled critical insights into the planning, assessment, and execution processes, offering invaluable guidance for stakeholders. The findings highlight both the opportunities for enhanced learning experiences and the challenges related to technological integration and social interaction in higher education.Keywords: metaverse, metaverse development framework, higher education, case study
Procedia PDF Downloads 415 The Application of Narrative Theory in Urban Spaces in China: A Systematic Review Based on PRISMA
Authors: Yuhan Liu, Zhongde Wang
Abstract:
This paper mainly analyzes the research and application of narrative theory in the field of urban space. This study used the PRISMA systematic review method, systematically studied 3098 Chinese literature through the search and screening of relevant domestic key literature databases, and reviewed the research status of narrative theory in urban space from three aspects: "theoretical perspective", "research object" and "research application". Finally, this paper points out the future development direction of narrative theory research based on the shortcomings of existing research in order to provide new ideas for future research.Keywords: narrative theory, urban space, PRISMA, systematic review
Procedia PDF Downloads 254 Estimating View-Through Ad Attribution from User Surveys Using Convex Optimization
Authors: Yuhan Lin, Rohan Kekatpure, Cassidy Yeung
Abstract:
In Digital Marketing, robust quantification of View-through attribution (VTA) is necessary for evaluating channel effectiveness. VTA occurs when a product purchase is aided by an Ad but without an explicit click (e.g. a TV ad). A lack of a tracking mechanism makes VTA estimation challenging. Most prevalent VTA estimation techniques rely on post-purchase in-product user surveys. User surveys enable the calculation of channel multipliers, which are the ratio of the view-attributed to the click-attributed purchases of each marketing channel. Channel multipliers thus provide a way to estimate the unknown VTA for a channel from its known click attribution. In this work, we use Convex Optimization to compute channel multipliers in a way that enables a mathematical encoding of the expected channel behavior. Large fluctuations in channel attributions often result from overfitting the calculations to user surveys. Casting channel attribution as a Convex Optimization problem allows an introduction of constraints that limit such fluctuations. The result of our study is a distribution of channel multipliers across the entire marketing funnel, with important implications for marketing spend optimization. Our technique can be broadly applied to estimate Ad effectiveness in a privacy-centric world that increasingly limits user tracking.Keywords: digital marketing, survey analysis, operational research, convex optimization, channel attribution
Procedia PDF Downloads 1993 Smart Coating for Enhanced Corneal Healing via Delivering Progranulin
Authors: Dan Yan, Yunuo Zhang, Yuhan Huang, Weijie Ouyang
Abstract:
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects by modulating the Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.Keywords: cornea, wound healing, progranulin, corneal epithelial cells, trigeminal ganglion cells
Procedia PDF Downloads 572 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 201 The Importance and Feasibility of Hospital Interventions for Patient Aggression and Violence Against Physicians in China: A Delphi Study
Authors: Yuhan Wu, CTB (Kees) Ahaus, Martina Buljac-Samardzic
Abstract:
Patient aggression and violence is a complex occupational hazards for physicians working in hospitals, and it can have multiple severe negative effects for physicians and hospitals. Although there is a range of interventions in the healthcare sector applied in various countries, China lacks a comprehensive set of interventions at the hospital level in this area. Therefore, due to cultural differences, this study investigates whether international interventions are important and feasible in the Chinese cultural context by conducting a Delphi study. Based on a literature search, a list of 47 hospital interventions to prevent and manage patient aggression and violence was constructed, including 8 categories: hospital environment design, access and entrance, staffing and work practice, training and education, leadership and culture, support, during/after-the-event actions, and hospital policy. The list of interventions will be refined, extended and brought back during a three-round Delphi study. The panel consists of 17 Chinese experts, including physicians experiencing patient aggression and violence, hospital management team members, scientists working in this research area, and policymakers in the healthcare sector. In each round, experts will receive the possible interventions with the instruction to indicate the importance and feasibility of each intervention for preventing and managing patient violence and aggression in Chinese hospitals. Experts will be asked about the importance and feasibility of interventions for patient violence and aggression at the same time. This study will exclude or include interventions based on the score of importance. More specifically, an intervention will be included after each round if >80% of the experts judged it as important or very important and excluded if >50% judged an intervention as not or moderately important. The three-round Delphi study will provide a list of included interventions and assess which of the 8 categories of interventions are considered as important. It is expected that this study can bring new ideas and inspiration to Chinese hospitals in the prevention and management of patient aggression and violence.Keywords: patient aggression and violence, hospital interventions, feasibility, importance
Procedia PDF Downloads 96