Search results for: Velmurugan G.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Velmurugan G.

2 Investigations of Protein Aggregation Using Sequence and Structure Based Features

Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan

Abstract:

The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.

Keywords: aggregation, amyloids, thermophilic proteins, amino acid residues, machine learning techniques

Procedia PDF Downloads 614
1 Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia

Authors: Karthika Durairaj, Buvaneswari G., Gowdham M., Gilles M., Velmurugan G.

Abstract:

Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment.

Keywords: hyperglycaemia, endocrine-disrupting chemicals, gut microbiota, host metabolism

Procedia PDF Downloads 40