Search results for: Shripad%20Kulkarni
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Shripad%20Kulkarni

3 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System

Authors: Shripad Kulkarni

Abstract:

Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.

Keywords: organic production system, diseases, bioagents and polyhouse, agriculture

Procedia PDF Downloads 379
2 Effect of Time of Planting on Powdery Mildew Development on Cucumber

Authors: H. Parameshwar Naik, Shripad Kulkarni

Abstract:

Powdery mildew is a serious disease among the fungal in high humid areas with varied temperature conditions. In recent days disease becomes very severe due to uncertain weather conditions and unique character of the disease is, it produces white mycelia growth on upper and lower leaf surfaces and in severe conditions it leads to defoliation. Results of the experiment revealed that sowing of crop in the I fortnight (FN) of July recorded the minimum mean disease severity (7.96 %) followed by crop sown in II FN of July (13.19 %) as against the crop sown in II FN of August (41.44 %) and I FN of September (33.78 %) and the I fortnight of October (33.77 %). In the first date of sowing infection started at 45 DAS and progressed till 73 DAS and it was up to 14.66 Percent and in second date of sowing disease progressed up to 22.66 percent and in the third date of sowing, it was up to 59.35 percent. Afterward, the disease started earlier and progressed up to 66.15 percent and in sixth and seventh date of sowing disease progressed up to 43.15 percent and 59.85 percent respectively. Disease progress is very fast after 45 days after sowing and highest disease incidence was noticed at 73 DAS irrespective of dates of sowing. From the results of the present study, it is very clear that disease development will be very high if crop sown in between 1st fortnight of August and the 1st fortnight of September.

Keywords: cucumber, India, Karnataka, powdery mildew

Procedia PDF Downloads 229
1 Migration in Times of Uncertainty

Authors: Harman Jaggi, David Steinsaltz, Shripad Tuljapurkar

Abstract:

Understanding the effect of fluctuations on populations is crucial in the context of increasing habitat fragmentation, climate change, and biological invasions, among others. Migration in response to environmental disturbances enables populations to escape unfavorable conditions, benefit from new environments and thereby ride out fluctuations in variable environments. Would populations disperse if there is no uncertainty? Karlin showed in 1982 that when sub-populations experience distinct but fixed growth rates at different sites, greater mixing of populations will lower the overall growth rate relative to the most favorable site. Here we ask if and when environmental variability favors migration over no-migration. Specifically, in random environments, would a small amount of migration increase the overall long-run growth rate relative to the zero migration case? We use analysis and simulations to show how long-run growth rate changes with migration rate. Our results show that when fitness (dis)advantages fluctuate over time across sites, migration may allow populations to benefit from variability. When there is one best site with highest growth rate, the effect of migration on long-run growth rate depends on the difference in expected growth between sites, scaled by the variance of the difference. When variance is large, there is a substantial probability of an inferior site experiencing higher growth rate than its average. Thus, a high variance can compensate for a difference in average growth rates between sites. Positive correlations in growth rates across sites favor less migration. With multiple sites and large fluctuations, the length of shortest cycle (excursion) from the best site (on average) matters, and we explore the interplay between excursion length, average differences between sites and the size of fluctuations. Our findings have implications for conservation biology: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space may be key to determining the importance of migration.

Keywords: migration, variable-environments, random, dispersal, fluctuations, habitat-quality

Procedia PDF Downloads 106