Search results for: Nemeshwaree Behary
3 Eco-Ways to Reduce Environmental Impacts of Flame Retardant Textiles at the End of Life
Authors: Sohail Yasin, Massimo Curti, Nemeshwaree Behary, Giorgio Rovero
Abstract:
It is well-known that the presence of discarded textile products in municipal landfills poses environmental problems due to leaching of chemical products from the textile to the environment. Incineration of such textiles is considered to be an efficient way to produce energy and reduce environmental impacts of textile materials at their end-of life stage. However, the presence of flame retardant products on textiles would decrease the energy yield and emit toxic gases during incineration stage. While some non-durable flame retardants can be removed by wet treatments (e.g. washing), these substances pollute water and pose concerns towards environmental health. Our study shows that infrared radiation can be used efficiently to degrade flame retardant products on the textiles. This method is finalized to minimize the decrease in energy yield during the incineration or gasification processes of flame retardant cotton fabrics.Keywords: degradation, flame retardant, infrared radiation, cotton, incineration
Procedia PDF Downloads 3662 The Potential Use of Flavin Mononucleotide for Photoluminescent and Bioluminescent Textile
Authors: Sweta Iyer, Nemeshwaree Behary, Jinping Guan, Guoqiang Chen, Vincent Nierstrasz
Abstract:
Flavin mononucleotide widely known as 'FMN' is a biobased resource derived from riboflavin. The isoalloxazine ring present in the FMN molecule attributes the photoluminescence phenomenon, whereas FMN molecule in the presence of bacterial luciferase enzyme and co-factors such as NADH, long chain aldehyde leads to bioluminescence reaction. In this study, the FMN molecule was treated on cellulosic textile using chromojet technique and the photoluminescence property was characterized using spectroscopy technique. Further, the FMN was used as a substrate along with enzymes and co-factors to treat the non-woven textile, and the bioluminescence property was explored using luminometer equipment. The investigation revealed photoluminescence property on cellulosic textile, and the emission peak was observed at a wavelength around 530 nm with an average corrected spectral intensity of 10×106 CPS/Microamps. In addition, the measurement of nonwoven textile using bioluminescence reaction system exhibited light intensity measured in the form of relative light units (RLU). The study enabled to explore the use of FMN as both photoluminescent and bioluminescent textile. Further investigation would require for stability study of the same to provide an eco-efficient approach to obtain luminescent textile.Keywords: flavin mononucleotide, photoluminescence, bioluminescence, luminescent textile
Procedia PDF Downloads 2911 Biomimetic Luminescent Textile Using Biobased Products
Authors: Sweta Iyer, Nemeshwaree Behary, Vincent Nierstrasz
Abstract:
Various organisms involve bioluminescence for their particular biological function. The bio-based molecules responsible for bioluminescence vary from one species to another, research has been done to identify the chemistry and different mechanisms involved in light production in living organisms. The light emitting chemical systems such as firefly and bacterial luminous mostly involves enzyme-catalyzed reactions and is widely used for ATP measurement, bioluminescence imaging, environmental biosensors etc. Our strategy is to design bioluminescent textiles using such bioluminescent systems. Hence, a detailed literature work was carried out to study on how to mimic bioluminescence effect seen in nature. Reaction mechanisms in various bioluminescent living organisms were studied and the components or molecules responsible for luminescence were identified. However, the challenge is to obtain the same effect on textiles by immobilizing enzymes responsible for light creation. Another challenge is also to regenerate substrates involved in the reaction system to create a longer lasting illumination in bioluminescent textiles. Natural film-forming polymers were used to immobilize the reactive components including enzymes on textile materials to design a biomimetic luminescent textile.Keywords: bioluminescence, biomimetic, immobilize, luminescent textile
Procedia PDF Downloads 264