Search results for: MDR pathogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 341

Search results for: MDR pathogen

11 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity

Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll

Abstract:

Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.

Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis

Procedia PDF Downloads 155
10 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection

Authors: T. C. C. Soo, S. Bhassu

Abstract:

Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.

Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene

Procedia PDF Downloads 119
9 Transcriptomic Analysis of Acanthamoeba castellanii Virulence Alteration by Epigenetic DNA Methylation

Authors: Yi-Hao Wong, Li-Li Chan, Chee-Onn Leong, Stephen Ambu, Joon-Wah Mak, Priyasashi Sahu

Abstract:

Background: Acanthamoeba is a genus of amoebae which lives as a free-living in nature or as a human pathogen that causes severe brain and eye infections. Virulence potential of Acanthamoeba is not constant and can change with growth conditions. DNA methylation, an epigenetic process which adds methyl groups to DNA, is used by eukaryotic cells, including several human parasites to control their gene expression. We used qPCR, siRNA gene silencing, and RNA sequencing (RNA-Seq) to study DNA-methyltransferase gene family (DNMT) in order to indicate the possibility of its involvement in programming Acanthamoeba virulence potential. Methods: A virulence-attenuated Acanthamoeba isolate (designation: ATCC; original isolate: ATCC 50492) was subjected to mouse passages to restore its pathogenicity; a virulence-reactivated isolate (designation: AC/5) was generated. Several established factors associated with Acanthamoeba virulence phenotype were examined to confirm the succession of reactivation process. Differential gene expression of DNMT between ATCC and AC/5 isolates was performed by qPCR. Silencing on DNMT gene expression in AC/5 isolate was achieved by siRNA duplex. Total RNAs extracted from ATCC, AC/5, and siRNA-treated (designation: si-146) were subjected to RNA-Seq for comparative transcriptomic analysis in order to identify the genome-wide effect of DNMT in regulating Acanthamoeba gene expression. qPCR was performed to validate the RNA-Seq results. Results: Physiological and cytophatic assays demonstrated an increased in virulence potential of AC/5 isolate after mouse passages. DNMT gene expression was significantly higher in AC/5 compared to ATCC isolate (p ≤ 0.01) by qPCR. si-146 duplex reduced DNMT gene expression in AC/5 isolate by 30%. Comparative transcriptome analysis identified the differentially expressed genes, with 3768 genes in AC/5 vs ATCC isolate; 2102 genes in si-146 vs AC/5 isolate and 3422 genes in si-146 vs ATCC isolate, respectively (fold-change of ≥ 2 or ≤ 0.5, p-value adjusted (padj) < 0.05). Of these, 840 and 1262 genes were upregulated and downregulated, respectively, in si-146 vs AC/5 isolate. Eukaryotic orthologous group (KOG) assignments revealed a higher percentage of downregulated gene expression in si-146 compared to AC/5 isolate, were related to posttranslational modification, signal transduction and energy production. Gene Ontology (GO) terms for those downregulated genes shown were associated with transport activity, oxidation-reduction process, and metabolic process. Among these downregulated genes were putative genes encoded for heat shock proteins, transporters, ubiquitin-related proteins, proteins for vesicular trafficking (small GTPases), and oxidoreductases. Functional analysis of similar predicted proteins had been described in other parasitic protozoa for their survival and pathogenicity. Decreased expression of these genes in si146-treated isolate may account in part for Acanthamoeba reduced pathogenicity. qPCR on 6 selected genes upregulated in AC/5 compared to ATCC isolate corroborated the RNA sequencing findings, indicating a good concordance between these two analyses. Conclusion: To the best of our knowledge, this study represents the first genome-wide analysis of DNA methylation and its effects on gene expression in Acanthamoeba spp. The present data indicate that DNA methylation has substantial effect on global gene expression, allowing further dissection of the genome-wide effects of DNA-methyltransferase gene in regulating Acanthamoeba pathogenicity.

Keywords: Acanthamoeba, DNA methylation, RNA sequencing, virulence

Procedia PDF Downloads 169
8 Differential Expression Analysis of Busseola fusca Larval Transcriptome in Response to Cry1Ab Toxin Challenge

Authors: Bianca Peterson, Tomasz J. Sańko, Carlos C. Bezuidenhout, Johnnie Van Den Berg

Abstract:

Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stem borer, is a major pest in sub-Saharan Africa. It causes economic damage to maize and sorghum crops and has evolved non-recessive resistance to genetically modified (GM) maize expressing the Cry1Ab insecticidal toxin. Since B. fusca is a non-model organism, very little genomic information is publicly available, and is limited to some cytochrome c oxidase I, cytochrome b, and microsatellite data. The biology of B. fusca is well-described, but still poorly understood. This, in combination with its larval-specific behavior, may pose problems for limiting the spread of current resistant B. fusca populations or preventing resistance evolution in other susceptible populations. As part of on-going research into resistance evolution, B. fusca larvae were collected from Bt and non-Bt maize in South Africa, followed by RNA isolation (15 specimens) and sequencing on the Illumina HiSeq 2500 platform. Quality of reads was assessed with FastQC, after which Trimmomatic was used to trim adapters and remove low quality, short reads. Trinity was used for the de novo assembly, whereas TransRate was used for assembly quality assessment. Transcript identification employed BLAST (BLASTn, BLASTp, and tBLASTx comparisons), for which two libraries (nucleotide and protein) were created from 3.27 million lepidopteran sequences. Several transcripts that have previously been implicated in Cry toxin resistance was identified for B. fusca. These included aminopeptidase N, cadherin, alkaline phosphatase, ATP-binding cassette transporter proteins, and mitogen-activated protein kinase. MEGA7 was used to align these transcripts to reference sequences from Lepidoptera to detect mutations that might potentially be contributing to Cry toxin resistance in this pest. RSEM and Bioconductor were used to perform differential gene expression analysis on groups of B. fusca larvae challenged and unchallenged with the Cry1Ab toxin. Pairwise expression comparisons of transcripts that were at least 16-fold expressed at a false-discovery corrected statistical significance (p) ≤ 0.001 were extracted and visualized in a hierarchically clustered heatmap using R. A total of 329,194 transcripts with an N50 of 1,019 bp were generated from the over 167.5 million high-quality paired-end reads. Furthermore, 110 transcripts were over 10 kbp long, of which the largest one was 29,395 bp. BLAST comparisons resulted in identification of 157,099 (47.72%) transcripts, among which only 3,718 (2.37%) were identified as Cry toxin receptors from lepidopteran insects. According to transcript expression profiles, transcripts were grouped into three subclusters according to the similarity of their expression patterns. Several immune-related transcripts (pathogen recognition receptors, antimicrobial peptides, and inhibitors) were up-regulated in the larvae feeding on Bt maize, indicating an enhanced immune status in response to toxin exposure. Above all, extremely up-regulated arylphorin genes suggest that enhanced epithelial healing is one of the resistance mechanisms employed by B. fusca larvae against the Cry1Ab toxin. This study is the first to provide a resource base and some insights into a potential mechanism of Cry1Ab toxin resistance in B. fusca. Transcriptomic data generated in this study allows identification of genes that can be targeted by biotechnological improvements of GM crops.

Keywords: epithelial healing, Lepidoptera, resistance, transcriptome

Procedia PDF Downloads 165
7 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process

Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink

Abstract:

The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, Poland

Keywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway

Procedia PDF Downloads 395
6 Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions

Authors: Thanthrige Thiunuwan Priyathilaka, Don Anushka Sandaruwan Elvitigala, Bong-Soo Lim, Hyung-Bok Jeong, Jehee Lee

Abstract:

Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections.

Keywords: rock bream, toll like receptor 21 (TLR21), pattern recognition receptor, genomic characterization

Procedia PDF Downloads 519
5 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar

Abstract:

Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.

Keywords: comparative genomics, DNA sequencing, phage, phylogenomics

Procedia PDF Downloads 154
4 A 3d Intestine-On-Chip Model Allows Colonization with Commensal Bacteria to Study Host-Microbiota Interaction

Authors: Michelle Maurer, Antonia Last, Mark S. Gresnigt, Bernhard Hube, Alexander S. Mosig

Abstract:

The intestinal epithelium forms an essential barrier to prevent translocation of microorganisms, toxins or other potentially harmful molecules into the bloodstream. In particular, dendritic cells of the intestinal epithelium orchestrate an adapted response of immune tolerance to commensals and immune defense against invading pathogens. Systemic inflammation is typically associated with a dysregulation of this adapted immune response and is accompanied by a disruption of the epithelial and endothelial gut barrier which enables dissemination of pathogens within the human body. To understand the pathophysiological mechanisms underlying the inflammation-associated gut barrier breakdown, it is crucial to elucidate the complex interplay of the host and the intestinal microbiome. A microfluidically perfused three-dimensional intestine-on-chip model was established to emulate these processes in the presence of immune cells, commensal bacteria, and facultative pathogens. Multi-organ tissue flow (MOTiF) biochips made from polystyrene were used for microfluidic perfusion of the intestinal tissue model. The biochips are composed of two chambers separated by a microporous membrane. Each chamber is connected to inlet and outlet channels allowing independent perfusion of the individual channels and application of microfluidic shear stress. Human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages and intestinal epithelial cells (Caco-2) were assembled on the biochip membrane. Following 7 – 14 days of growth in the presence of physiological flow conditions, the epithelium was colonized with the commensal bacterium Lactobacillus rhamnosus, while the endothelium was perfused with peripheral blood mononuclear cells (PBMCs). Additionally, L. rhamnosus was co-cultivated with the opportunistic fungal pathogen Candida albicans. Within one week of perfusion, the epithelial cells formed self-organized and well-polarized villus- and crypt-like structures that resemble essential morphological characteristics of the human intestine. Dendritic cells were differentiated in the epithelial tissue that specifically responds to bacterial lipopolysaccharide (LPS) challenge. LPS is well-tolerated at the luminal epithelial side of the intestinal model without signs of tissue damage or induction of an inflammatory response, even in the presence of circulating PBMC at the endothelial lining. In contrast, LPS stimulation at the endothelial side of the intestinal model triggered the release of pro-inflammatory cytokines such as TNF, IL-1β, IL-6, and IL-8 via activation of macrophages residing in the endothelium. Perfusion of the endothelium with PBMCs led to an enhanced cytokine release. L. rhamnosus colonization of the model was tolerated in the immune competent tissue model and was demonstrated to reduce damage induced by C. albicans infection. A microfluidic intestine-on-chip model was developed to mimic a systemic infection with a dysregulated immune response under physiological conditions. The model facilitates the colonization of commensal bacteria and co-cultivation with facultative pathogenic microorganisms. Both, commensal bacteria alone and facultative pathogens controlled by commensals, are tolerated by the host and contribute to cell signaling. The human intestine-on-chip model represents a promising tool to mimic microphysiological conditions of the human intestine and paves the way for more detailed in vitro studies of host-microbiota interactions under physiologically relevant conditions.

Keywords: host-microbiota interaction, immune tolerance, microfluidics, organ-on-chip

Procedia PDF Downloads 106
3 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.

Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound

Procedia PDF Downloads 55
2 The Lytic Bacteriophage VbɸAB-1 Against Drug-Resistant Acinetobacter Baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of a variety of bacterial infections. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi-drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. The present study analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, the range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin. According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Podoviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients. The findings of our research indicated that isolated phages could be an effective antimicrobial and an appreciate candidate for prophylaxis against pressure ulcers.

Keywords: acinetobacter baumannii, extremely drug-resistant, phage therapy, surgery wound

Procedia PDF Downloads 54
1 Antimicrobial and Antioxidant Activities of Actinobacteria Isolated from the Pollen of Pinus sylvestris Grown on the Lake Baikal Shore

Authors: Denis V. Axenov-Gribanov, Irina V. Voytsekhovskaya, Evgenii S. Protasov, Maxim A. Timofeyev

Abstract:

Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Pinus sylvestris trees growing on the shore of the ancient Lake Baikal in Siberia. The actinobacterial strains were isolated on solid nutrient MS media and Czapek agar supplemented with cycloheximide and phosphomycin. Identification of actinobacteria was carried out by 16S rRNA gene sequencing and further analysis of the evolutionary history. Four different liquid and solid media (NL19, DNPM, SG and ISP) were tested for metabolite production. The metabolite extracts produced by the isolated strains were tested for antibacterial and antifungal activities. Also, antiradical activity of crude extracts was carried out. Strain Streptomyces sp. IB 2014 I 74-3 that active against Gram-negative bacteria was selected for dereplication analysis with using the high-yield liquid chromatography with mass-spectrometry. Mass detection was performed in both positive and negative modes, with the detection range set to 160–2500 m/z. Data were collected and analyzed using Bruker Compass Data Analysis software, version 4.1. Dereplication was performed using the Dictionary of Natural Products (DNP) database version 6.1 with the following search parameters: accurate molecular mass, absorption spectra and source of compound isolation. Thus, in addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. Several of the selected strains were deposited in the Russian Collection of Agricultural Microorganisms (RCAM), St. Petersburg, Russia. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. Moreover, extracts of several strains demonstrated high antioxidant activity. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens. Dereplication of the secondary metabolites of the strain Streptomyces sp. IB 2014 I 74-3 was resulted in the fact that a total of 59 major compounds were detected in the culture liquid extract of strain cultivated in ISP medium. Eight compounds were preliminarily identified based on characteristics described in the Dictionary of Natural Products database, using the search parameters Streptomyces sp. IB 2014 I 74-3 was found to produce saframycin A, Y3 and S; 2-amino-3-oxo-3H-phenoxazine-1,8-dicarboxylic acid; galtamycinone; platencin A4-13R and A4-4S; ganefromycin d1; the antibiotic SS 8201B; and streptothricin D, 40-decarbamoyl, 60-carbamoyl. Moreover, forty-nine of the 59 compounds detected in the extract examined in the present study did not result in any positive hits when searching within the DNP database and could not be identified based on available mass-spec data. Thus, these compounds might represent new findings.

Keywords: actinobacteria, Baikal Lake, biodiversity, male cones, Pinus sylvestris

Procedia PDF Downloads 202