Search results for: Kim A. Timm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Kim A. Timm

3 Barclays Bank Zambia: Considerations for Raft Foundation Design on Dolomite Land

Authors: Yashved Serhun, Kim A. Timm

Abstract:

Barclays Bank has identified the need for a head office building in Lusaka, Zambia, and construction of a 7200 m2 three-storey reinforced concrete office building with a structural steel roof is currently underway. A unique characteristic of the development is that the building footprint is positioned on dolomitic land. Dolomite rock has the tendency to react with and breakdown in the presence of slightly acidic water, including rainwater. This leads to a potential for subsidence and sinkhole formation. Subsidence and the formation of sinkholes beneath a building can be detrimental during both the construction and operational phases. This paper outlines engineering principles which were considered during the structural design of the raft foundation for the Barclays head office building. In addition, this paper includes multidisciplinary considerations and the impact of these on the structural engineering design of the raft foundation. By ensuring that the design of raft foundations on dolomitic land incorporates the requirements of all disciplines and relevant design codes during the design process, the risk associated with subsidence and sinkhole formation can be effectively mitigated during the operational phase of the building.

Keywords: dolomite, dolomitic land, raft foundation, structural engineering design

Procedia PDF Downloads 124
2 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 217
1 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 27