Search results for: Dina Kuttah
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 92

Search results for: Dina Kuttah

2 Stroke Prevention in Patients with Atrial Fibrillation and Co-Morbid Physical and Mental Health Problems

Authors: Dina Farran, Mark Ashworth, Fiona Gaughran

Abstract:

Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is associated with an increased risk of stroke, contributing to heart failure and death. In this project, we aim to improve patient safety by screening for stroke risk among people with AF and co-morbid mental illness. To do so, we started by conducting a systematic review and meta-analysis on prevalence, management, and outcomes of AF in people with Serious Mental Illness (SMI) versus the general population. We then evaluated oral anticoagulation (OAC) prescription trends in people with AF and co-morbid SMI in King’s College Hospital. We also evaluated the association between mental illness severity and OAC prescription in eligible patients in South London and Maudsley (SLaM) NHS Foundation Trust. Next, we implemented an electronic clinical decision support system (eCDSS) consisting of a visual prompt on patient electronic Personal Health Records to screen for AF-related stroke risk in three Mental Health of Older Adults wards at SLaM. Finally, we assessed the feasibility and acceptability of the eCDSS by qualitatively investigating clinicians’ perspectives of the potential usefulness of the eCDSS (pre-intervention) and their experiences and their views regarding its impact on clinicians and patients (post-intervention). The systematic review showed that people with SMI had low reported rates of AF. AF patients with SMI were less likely to receive OAC than the general population. When receiving warfarin, people with SMI, particularly bipolar disorder, experienced poor anticoagulation control compared to the general population. Meta-analysis showed that SMI was not significantly associated with an increased risk of stroke or major bleeding when adjusting for underlying risk factors. The main findings of the first observational study were that among AF patients having a high stroke risk, those with co-morbid SMI were less likely than non-SMI to be prescribed any OAC, particularly warfarin. After 2019, there was no significant difference between the two groups. In the second observational study, patients with AF and co-morbid SMI were less likely to be prescribed any OAC compared to those with dementia, substance use disorders, or common mental disorders, adjusting for age, sex, stroke, and bleeding risk scores. Among AF patients with co-morbid SMI, warfarin was less likely to be prescribed to those having alcohol or substance dependency, serious self-injury, hallucinations or delusions, and activities of daily living impairment. In the intervention, clinicians were asked to confirm the presence of AF, clinically assess stroke and bleeding risks, record risk scores in clinical notes, and refer patients at high risk of stroke to OAC clinics. Clinicians reported many potential benefits for the eCDSS, including improving clinical effectiveness, better identification of patients at risk, safer and more comprehensive care, consistency in decision making and saving time. Identified potential risks included rigidity in decision-making, overreliance, reduced critical thinking, false positive recommendations, annoyance, and increased workload. This study presents a unique opportunity to quantify AF patients with mental illness who are at high risk of severe outcomes using electronic health records. This has the potential to improve health outcomes and, therefore patients' quality of life.

Keywords: atrial fibrillation, stroke, mental health conditions, electronic clinical decision support systems

Procedia PDF Downloads 21
1 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 190