Search results for: computational simulations
773 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios
Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong
Abstract:
This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.Keywords: computational analysis, damage scenarios, electronic road signs, finite element, welded connections
Procedia PDF Downloads 91772 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial
Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler
Abstract:
Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training
Procedia PDF Downloads 112771 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 63770 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 154769 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 49768 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach
Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature
Procedia PDF Downloads 92767 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 257766 A Posteriori Trading-Inspired Model-Free Time Series Segmentation
Authors: Plessen Mogens Graf
Abstract:
Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.Keywords: time series segmentation, model-free, trading-inspired, multivariate data
Procedia PDF Downloads 133765 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study
Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.
Abstract:
Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET
Procedia PDF Downloads 102764 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis
Procedia PDF Downloads 351763 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool
Procedia PDF Downloads 366762 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 234761 Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students
Authors: S. MacDonald, A. Manuel, R. Law, N. Bandruak, A. Dubrowski, V. Curran, J. Smith-Young, K. Simmons, A. Warren
Abstract:
High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.Keywords: acute anaphylaxis, high fidelity human patient simulation, low fidelity simulation, interprofessional education
Procedia PDF Downloads 229760 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks
Authors: Bircan Demiral
Abstract:
Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.Keywords: cognitive radio network, OFDM, power allocation, water filling
Procedia PDF Downloads 136759 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 100758 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers
Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis
Abstract:
This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers
Procedia PDF Downloads 304757 Modified Model for UV-Laser Corneal Ablation
Authors: Salah Hassab Elnaby, Omnia Hamdy, Aziza Ahmed Hassan, Salwa Abdelkawi, Ibrahim Abdelhalim
Abstract:
Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion.Keywords: UV lasers, mathematical model, corneal ablation, photochemical ablation
Procedia PDF Downloads 85756 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor
Authors: Asad Islam, Khalid Parvez
Abstract:
Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.Keywords: axial compressor, distortions, angle, CFD, ANSYS-CFX®, bladegen®
Procedia PDF Downloads 454755 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption
Authors: Robert Joseph M. Licup
Abstract:
The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption
Procedia PDF Downloads 107754 Algorithm for Quantification of Pulmonary Fibrosis in Chest X-Ray Exams
Authors: Marcela de Oliveira, Guilherme Giacomini, Allan Felipe Fattori Alves, Ana Luiza Menegatti Pavan, Maria Eugenia Dela Rosa, Fernando Antonio Bacchim Neto, Diana Rodrigues de Pina
Abstract:
It is estimated that each year one death every 10 seconds (about 2 million deaths) in the world is attributed to tuberculosis (TB). Even after effective treatment, TB leaves sequelae such as, for example, pulmonary fibrosis, compromising the quality of life of patients. Evaluations of the aforementioned sequel are usually performed subjectively by radiology specialists. Subjective evaluation may indicate variations inter and intra observers. The examination of x-rays is the diagnostic imaging method most accomplished in the monitoring of patients diagnosed with TB and of least cost to the institution. The application of computational algorithms is of utmost importance to make a more objective quantification of pulmonary impairment in individuals with tuberculosis. The purpose of this research is the use of computer algorithms to quantify the pulmonary impairment pre and post-treatment of patients with pulmonary TB. The x-ray images of 10 patients with TB diagnosis confirmed by examination of sputum smears were studied. Initially the segmentation of the total lung area was performed (posteroanterior and lateral views) then targeted to the compromised region by pulmonary sequel. Through morphological operators and the application of signal noise tool, it was possible to determine the compromised lung volume. The largest difference found pre- and post-treatment was 85.85% and the smallest was 54.08%.Keywords: algorithm, radiology, tuberculosis, x-rays exam
Procedia PDF Downloads 417753 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 114752 Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles
Authors: Chuan-Wen Liu, Min-Hsien Liu, Chung-Chieh Tai, Bing-Cheng Kuo, Cheng-Lung Chen, Huazhen Shen
Abstract:
A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material.Keywords: wave-absorbing property, magnetic material, micro-dot magnetic dipole, particulate aggregation
Procedia PDF Downloads 489751 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.Keywords: urban ventilation path, ventilation efficiency indices, CFD, building layout
Procedia PDF Downloads 382750 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 116749 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System
Authors: Miguel Angel Calvo Salve
Abstract:
Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems
Procedia PDF Downloads 61748 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 406747 Biomechanical Study of a Type II Superior Labral Anterior to Posterior Lesion in the Glenohumeral Joint Using Finite Element Analysis
Authors: Javier A. Maldonado E., Duvert A. Puentes T., Diego F. Villegas B.
Abstract:
The SLAP lesion (Superior Labral Anterior to Posterior) involves the labrum, causing pain and mobility problems in the glenohumeral joint. This injury is common in athletes practicing sports that requires throwing or those who receive traumatic impacts on the shoulder area. This paper determines the biomechanical behavior of soft tissues of the glenohumeral joint when type II SLAP lesion is present. This pathology is characterized for a tear in the superior labrum which is simulated in a 3D model of the shoulder joint. A 3D model of the glenohumeral joint was obtained using the free software Slice. Then, a Finite Element analysis was done using a general purpose software which simulates a compression test with external rotation. First, a validation was done assuming a healthy joint shoulder with a previous study. Once the initial model was validated, a lesion of the labrum built using a CAD software and the same test was done again. The results obtained were stress and strain distribution of the synovial capsule and the injured labrum. ANOVA was done for the healthy and injured glenohumeral joint finding significant differences between them. This study will help orthopedic surgeons to know the biomechanics involving this type of lesion and also the other surrounding structures affected by loading the injured joint.Keywords: biomechanics, computational model, finite elements, glenohumeral joint, superior labral anterior to posterior lesion
Procedia PDF Downloads 206746 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 439745 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions
Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio
Abstract:
The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins
Procedia PDF Downloads 36744 A Risk-Based Approach to Construction Management
Authors: Chloe E. Edwards, Yasaman Shahtaheri
Abstract:
Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering
Procedia PDF Downloads 106