Search results for: sentence parsing
11 How Restorative Justice Can Inform and Assist the Provision of Effective Remedies to Hate Crime, Case Study: The Christchurch Terrorist Attack
Authors: Daniel O. Kleinsman
Abstract:
The 2019 terrorist attack on two masjidain in Christchurch, New Zealand, was a shocking demonstration of the harm that can be caused by hate crime. As legal and governmental responses to the attack struggle to provide effective remedies to its victims, restorative justice has emerged as a tool that can assist, in terms of both meeting victims’ needs and discharging the obligations of the state under the International Covenant on Civil and Political Rights (ICCPR), arts 2(3), 26, 27. Restorative justice is a model that emphasizes the repair of harm caused or revealed by unjust behavior. It also prioritises the facilitation of dialogue, the restoration of equitable relationships, and the prevention of future harm. Returning to the case study, in the remarks of the sentencing judge, the terrorist’s actions were described as a hate crime of vicious malevolence that the Court was required to decisively reject, as anathema to the values of acceptance, tolerance and mutual respect upon which New Zealand’s inclusive society is based and which the country strives to maintain. This was one of the reasons for which the terrorist received a life sentence with no possibility of parole. However, in the report of the Royal Commission of Inquiry into the Attack, it was found that victims felt the attack occurred within the context of widespread racism, discrimination and Islamophobia, where hostile behaviors, including hate-based threats and attacks, were rarely recorded, analysed or acted on. It was also found that the Government had inappropriately concentrated intelligence resources on the risk of ‘Islamist’ terrorism and had failed to adequately respond to concerns raised about threats against the Muslim community. In this light, the remarks of the sentencing judge can be seen to reflect a criminal justice system that, in the absence of other remedies, denies systemic accountability and renders hate crime an isolated incident rather than an expression of more widespread discrimination and hate to be holistically addressed. One of the recommendations of the Royal Commission was to explore with victims the desirability and design of restorative justice processes. This presents an opportunity for victims to meet with state representatives and pursue effective remedies (ICCPR art 2(3)) not only for the harm caused by the terrorist but the harm revealed by a system that has exposed the minority Muslim community in New Zealand to hate in all forms, including but not limited to violent extremism. In this sense, restorative justice can also assist the state in discharging its wider obligations to protect all persons from discrimination (art 26) and allow ethnic and religious minorities to enjoy their own culture and profess and practice their own religion (art 27). It can also help give effect to the law and its purpose as a remedy to hate crime, as expressed in this case study by the sentencing judge.Keywords: hate crime, restorative justice, minorities, victims' rights
Procedia PDF Downloads 11310 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1089 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 1768 Examining Child Rape Provisions of Bangladesh in Comparison with Other South Asian Countries
Authors: Monira Nazmi Jahan
Abstract:
Child rape or child abuse is a serious and fearsome crime against children, which is an epidemic almost in every state of today’s world. However, in the case of Bangladesh, the scenario is terrifying. The objective of this paper is to examine the laws relating to child rape in Bangladesh as according to a renowned Daily Newspaper 'Prothom Alo', nearly 346 children are being raped since January 2019. This paper discusses and draws the difference of child rape provisions of Bangladesh with other South-Asian countries, comprises of India, Maldives, Pakistan, Sri Lanka, Nepal, Bhutan, and Afghanistan. In Bangladesh, girls below 18 years are considered to be a child. ‘The Penal Code, 1860’ and a special law ‘Nari O Shishu Nirjatan Daman Ain, 2012’ provides that any person committing child rape will be punished with rigorous life imprisonment and fine. This piece of law also gives provisions for punishment in case of child’s death after the commission of rape and gang rape, and the punishment is the death penalty. In India there is ‘The Protection of Children from Sexual Offences Act, 2012’ (POSCO) which has separate provisions for sexual assault, penetrative sexual assault and aggravated penetrative sexual assault by different categories of person such as relatives, institutional officers and trustees and also for mentally and physically challenged child victims and provides punishment up to death penalty. In Pakistan, there is ‘Pakistan Penal Code Amended Act, 2016’ which has only two provisions for child rape. In case offence committed by one person, the punishment is 10 to 25 years of imprisonment and fine. In case of offence committed by two or more persons, each shall be liable to death or imprisonment for life. Unfortunately, Afghanistan has no laws for the protection of rape victims of women let alone children, whereas there are a lot of child rape cases, including both girls and boys who are used for sexual slavery. The Maldives has a special law named ‘Special Provisions Act to Deal with Child Sex Abuse Offenders.’ This has categorized the offenders like POSCO and has provided punishments accordingly. The punishments are: punishments range from 1 to 25 years accordingly, whereas Bangladesh has lesser provisions, but the gravity and duration of punishments are much higher. The Penal Code of Sri Lanka imposes a minimum sentence of 10 years for those convicted of raping a child under 18 years. In Bhutan, child rape provision is made according to the age of a child. ‘The Penal Code of Bhutan, 2004’, mentions provisions for the rape of a child in case of child rape below and above 12 years, gang rape of a child below and above 12 years and has graded the punishments as first, second and third degree. Though Bangladesh has better provisions for punishments, the ages are not categorized in the laws. In Nepal there is ‘Act relating to Children, 2018’ provisions are made for offenders who use or cause or engage child sexual exploitation, and the punishment is same for rape offenders according to prevailing laws in Nepal. No separate punishments for child offenders are made. The ultimate conclusion that can be drawn is Bangladesh has better punishments than all other South-Asian countries and same punishment as India however, Bangladesh can make or amend the laws and categorize offenders as like POSCO of India, Special provisions of Maldives and Bhutan.Keywords: child rape, death penalty, sexual slavery, South Asia
Procedia PDF Downloads 1137 The Processing of Context-Dependent and Context-Independent Scalar Implicatures
Authors: Liu Jia’nan
Abstract:
The default accounts hold the view that there exists a kind of scalar implicature which can be processed without context and own a psychological privilege over other scalar implicatures which depend on context. In contrast, the Relevance Theorist regards context as a must because all the scalar implicatures have to meet the need of relevance in discourse. However, in Katsos, the experimental results showed: Although quantitatively the adults rejected under-informative utterance with lexical scales (context-independent) and the ad hoc scales (context-dependent) at almost the same rate, adults still regarded the violation of utterance with lexical scales much more severe than with ad hoc scales. Neither default account nor Relevance Theory can fully explain this result. Thus, there are two questionable points to this result: (1) Is it possible that the strange discrepancy is due to other factors instead of the generation of scalar implicature? (2) Are the ad hoc scales truly formed under the possible influence from mental context? Do the participants generate scalar implicatures with ad hoc scales instead of just comparing semantic difference among target objects in the under- informative utterance? In my Experiment 1, the question (1) will be answered by repetition of Experiment 1 by Katsos. Test materials will be showed by PowerPoint in the form of pictures, and each procedure will be done under the guidance of a tester in a quiet room. Our Experiment 2 is intended to answer question (2). The test material of picture will be transformed into the literal words in DMDX and the target sentence will be showed word-by-word to participants in the soundproof room in our lab. Reading time of target parts, i.e. words containing scalar implicatures, will be recorded. We presume that in the group with lexical scale, standardized pragmatically mental context would help generate scalar implicature once the scalar word occurs, which will make the participants hope the upcoming words to be informative. Thus if the new input after scalar word is under-informative, more time will be cost for the extra semantic processing. However, in the group with ad hoc scale, scalar implicature may hardly be generated without the support from fixed mental context of scale. Thus, whether the new input is informative or not does not matter at all, and the reading time of target parts will be the same in informative and under-informative utterances. People’s mind may be a dynamic system, in which lots of factors would co-occur. If Katsos’ experimental result is reliable, will it shed light on the interplay of default accounts and context factors in scalar implicature processing? We might be able to assume, based on our experiments, that one single dominant processing paradigm may not be plausible. Furthermore, in the processing of scalar implicature, the semantic interpretation and the pragmatic interpretation may be made in a dynamic interplay in the mind. As to the lexical scale, the pragmatic reading may prevail over the semantic reading because of its greater exposure in daily language use, which may also lead the possible default or standardized paradigm override the role of context. However, those objects in ad hoc scale are not usually treated as scalar membership in mental context, and thus lexical-semantic association of the objects may prevent their pragmatic reading from generating scalar implicature. Only when the sufficient contextual factors are highlighted, can the pragmatic reading get privilege and generate scalar implicature.Keywords: scalar implicature, ad hoc scale, dynamic interplay, default account, Mandarin Chinese processing
Procedia PDF Downloads 3286 The Roles of Mandarin and Local Dialect in the Acquisition of L2 English Consonants Among Chinese Learners of English: Evidence From Suzhou Dialect Areas
Authors: Weijing Zhou, Yuting Lei, Francis Nolan
Abstract:
In the domain of second language acquisition, whenever pronunciation errors or acquisition difficulties are found, researchers habitually attribute them to the negative transfer of the native language or local dialect. To what extent do Mandarin and local dialects affect English phonological acquisition for Chinese learners of English as a foreign language (EFL)? Little evidence, however, has been found via empirical research in China. To address this core issue, the present study conducted phonetic experiments to explore the roles of local dialects and Mandarin in Chinese EFL learners’ acquisition of L2 English consonants. Besides Mandarin, the sole national language in China, Suzhou dialect was selected as the target local dialect because of its distinct phonology from Mandarin. The experimental group consisted of 30 junior English majors at Yangzhou University, who were born and lived in Suzhou, acquired Suzhou Dialect since their early childhood, and were able to communicate freely and fluently with each other in Suzhou Dialect, Mandarin as well as English. The consonantal target segments were all the consonants of English, Mandarin and Suzhou Dialect in typical carrier words embedded in the carrier sentence Say again. The control group consisted of two Suzhou Dialect experts, two Mandarin radio broadcasters, and two British RP phoneticians, who served as the standard speakers of the three languages. The reading corpus was recorded and sampled in the phonetic laboratories at Yangzhou University, Soochow University and Cambridge University, respectively, then transcribed, segmented and analyzed acoustically via Praat software, and finally analyzed statistically via EXCEL and SPSS software. The main findings are as follows: First, in terms of correct acquisition rates (CARs) of all the consonants, Mandarin ranked top (92.83%), English second (74.81%) and Suzhou Dialect last (70.35%), and significant differences were found only between the CARs of Mandarin and English and between the CARs of Mandarin and Suzhou Dialect, demonstrating Mandarin was overwhelmingly more robust than English or Suzhou Dialect in subjects’ multilingual phonological ecology. Second, in terms of typical acoustic features, the average duration of all the consonants plus the voice onset time (VOT) of plosives, fricatives, and affricatives in 3 languages were much longer than those of standard speakers; the intensities of English fricatives and affricatives were higher than RP speakers but lower than Mandarin and Suzhou Dialect standard speakers; the formants of English nasals and approximants were significantly different from those of Mandarin and Suzhou Dialects, illustrating the inconsistent acoustic variations between the 3 languages. Thirdly, in terms of typical pronunciation variations or errors, there were significant interlingual interactions between the 3 consonant systems, in which Mandarin consonants were absolutely dominant, accounting for the strong transfer from L1 Mandarin to L2 English instead of from earlier-acquired L1 local dialect to L2 English. This is largely because the subjects were knowingly exposed to Mandarin since their nursery and were strictly required to speak in Mandarin through all the formal education periods from primary school to university.Keywords: acquisition of L2 English consonants, role of Mandarin, role of local dialect, Chinese EFL learners from Suzhou Dialect areas
Procedia PDF Downloads 1035 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury
Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp
Abstract:
Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation
Procedia PDF Downloads 1264 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework
Authors: Robert Pocklington
Abstract:
Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language
Procedia PDF Downloads 1113 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 1872 Official Game Account Analysis: Factors Influence Users' Judgments in Limited-Word Posts
Authors: Shanhua Hu
Abstract:
Social media as a critical propagandizing form of film, video games, and digital products has received substantial research attention, but there exists several critical barriers such as: (1) few studies exploring the internal and external connections of a product as part of the multimodal context that gives rise to readability and commercial return; (2) the lack of study of multimodal analysis in product’s official account of game publishers and its impact on users’ behaviors including purchase intention, social media engagement, and playing time; (3) no standardized ecologically-valid, game type-varying data can be used to study the complexity of official account’s postings within a time period. This proposed research helps to tackle these limitations in order to develop a model of readability study that is more ecologically valid, robust, and thorough. To accomplish this objective, this paper provides a more diverse dataset comprising different visual elements and messages collected from the official Twitter accounts of the Top 20 best-selling games of 2021. Video game companies target potential users through social media, a popular approach is to set up an official account to maintain exposure. Typically, major game publishers would create an official account on Twitter months before the game's release date to update on the game's development, announce collaborations, and reveal spoilers. Analyses of tweets from those official Twitter accounts would assist publishers and marketers in identifying how to efficiently and precisely deploy advertising to increase game sales. The purpose of this research is to determine how official game accounts use Twitter to attract new customers, specifically which types of messages are most effective at increasing sales. The dataset includes the number of days until the actual release date on Twitter posts, the readability of the post (Flesch Reading Ease Score, FRES), the number of emojis used, the number of hashtags, the number of followers of the mentioned users, the categorization of the posts (i.e., spoilers, collaborations, promotions), and the number of video views. The timeline of Twitter postings from official accounts will be compared to the history of pre-orders and sales figures to determine the potential impact of social media posts. This study aims to determine how the above-mentioned characteristics of official accounts' Twitter postings influence the sales of the game and to examine the possible causes of this influence. The outcome will provide researchers with a list of potential aspects that could influence people's judgments in limited-word posts. With the increased average online time, users would adapt more quickly than before in online information exchange and readings, such as the word to use sentence length, and the use of emojis or hashtags. The study on the promotion of official game accounts will not only enable publishers to create more effective promotion techniques in the future but also provide ideas for future research on the influence of social media posts with a limited number of words on consumers' purchasing decisions. Future research can focus on more specific linguistic aspects, such as precise word choice in advertising.Keywords: engagement, official account, promotion, twitter, video game
Procedia PDF Downloads 851 The Role of Pragmatic Factors in Conditional Reasoning: A Study on Counterfactual and Hypothetical Conditionals in Mandarin Chinese
Authors: Yanting Sun
Abstract:
Contemporary theories in cognitive linguistics have established that conditional statements, particularly counterfactuals that express scenarios contradicting known facts, activate distinct mental models in language processing. For instance, a counterfactual statement such as "If it had rained, then they would not go to the park" simultaneously triggers two mental representations: a hypothetical but factually impossible scenario ("rain" and "no park visit") and its corresponding reality-based model ("no rain" and "park visit"). This study investigates the differential effects of pragmatic factors on the comprehension and processing of counterfactual versus hypothetical conditional sentences in Mandarin Chinese, with particular attention to the cognitive mechanisms underlying their interpretation. The experimental design incorporated a comprehensive examination of three critical variables: temporal indicators (comparing past versus future markers) in the antecedent clause, polarity variations (presence or absence of negators), and directional verb distinctions (contrasting lai2 [come] versus qu4 [go]) in the consequent clause. Participants were presented with a carefully curated set of Chinese conditional statements and asked to evaluate their comprehensibility. The study employed sophisticated statistical analyses using linear mixed-effects models (LMEM) to process the resulting data. The findings revealed several significant patterns. First, hypothetical conditionals incorporating future temporal indicators demonstrated consistently higher comprehensibility ratings compared to counterfactual conditionals featuring past temporal indicators. Second, detailed semantic similarity analysis within subordinate clauses showed that future temporal indicators exhibited stronger lexical-semantic co-occurrence patterns than their past-tense counterparts, suggesting that temporal marking influences comprehension through complex lexical-semantic relationships within the premise. This pattern indicates that hypothetical conditionals may require less cognitive processing effort, potentially due to their alignment with natural language processing patterns. Interestingly, when examining semantic similarities between main and subordinate clauses, temporal indicators showed no significant effect. This absence of cross-clausal influence suggests that lexical-semantic co-occurrence patterns spanning across clauses play a minimal role in the cognitive distinction between hypothetical and counterfactual conditionals. This finding challenges previous assumptions about the role of cross-clausal semantic relationships in conditional processing. The study also revealed nuanced interactions between temporal indicators, negation, and directional verbs, contributing to a more comprehensive understanding of how these linguistic elements collectively influence conditional sentence processing. These interactions suggest that the cognitive processing of conditionals involves multiple layers of linguistic and pragmatic information integration. These findings make substantial contributions to both theoretical and practical domains. Theoretically, they enhance our understanding of mental model activation in conditional reasoning, particularly within the context of Mandarin Chinese. Practically, they offer insights into language processing mechanisms that could inform pedagogical approaches to teaching complex conditional structures and support the development of more effective language processing systems.Keywords: counterfactuals, hypothetical, negator, temporal indicator
Procedia PDF Downloads 3