Search results for: cardiac output
9 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients
Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen
Abstract:
Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric
Procedia PDF Downloads 928 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 1347 Critical Factors for Successful Adoption of Land Value Capture Mechanisms – An Exploratory Study Applied to Indian Metro Rail Context
Authors: Anjula Negi, Sanjay Gupta
Abstract:
Paradigms studied inform inadequacies of financial resources, be it to finance metro rails for construction or to meet operational revenues or to derive profits in the long term. Funding sustainability is far and wide for much-needed public transport modes, like urban rail or metro rails, to be successfully operated. India embarks upon a sustainable transport journey and has proposed metro rail systems countrywide. As an emerging economic leader, its fiscal constraints are paramount, and the land value capture (LVC) mechanism provides necessary support and innovation toward development. India’s metro rail policy promotes multiple methods of financing, including private-sector investments and public-private-partnership. The critical question that remains to be addressed is what factors can make such mechanisms work. Globally, urban rail is a revolution noted by many researchers as future mobility. Researchers in this study deep dive by way of literature review and empirical assessments into factors that can lead to the adoption of LVC mechanisms. It is understood that the adoption of LVC methods is in the nascent stages in India. Research posits numerous challenges being faced by metro rail agencies in raising funding and for incremental value capture. A few issues pertaining to land-based financing, inter alia: are long-term financing, inter-institutional coordination, economic/ market suitability, dedicated metro funds, land ownership issues, piecemeal approach to real estate development, property development legal frameworks, etc. The question under probe is what are the parameters that can lead to success in the adoption of land value capture (LVC) as a financing mechanism. This research provides insights into key parameters crucial to the adoption of LVC in the context of Indian metro rails. Researchers have studied current forms of LVC mechanisms at various metro rails of the country. This study is significant as little research is available on the adoption of LVC, which is applicable to the Indian context. Transit agencies, State Government, Urban Local Bodies, Policy makers and think tanks, Academia, Developers, Funders, Researchers and Multi-lateral agencies may benefit from this research to take ahead LVC mechanisms in practice. The study deems it imperative to explore and understand key parameters that impact the adoption of LVC. Extensive literature review and ratification by experts working in the metro rails arena were undertaken to arrive at parameters for the study. Stakeholder consultations in the exploratory factor analysis (EFA) process were undertaken for principal component extraction. 43 seasoned and specialized experts participated in a semi-structured questionnaire to scale the maximum likelihood on each parameter, represented by various types of stakeholders. Empirical data was collected on chosen eighteen parameters, and significant correlation was extracted for output descriptives and inferential statistics. Study findings reveal these principal components as institutional governance framework, spatial planning features, legal frameworks, funding sustainability features and fiscal policy measures. In particular, funding sustainability features highlight sub-variables of beneficiaries to pay and use of multiple revenue options towards success in LVC adoption. Researchers recommend incorporation of these variables during early stage in design and project structuring for success in adoption of LVC. In turn leading to improvements in revenue sustainability of a public transport asset and help in undertaking informed transport policy decisions.Keywords: Exploratory factor analysis, land value capture mechanism, financing metro rails, revenue sustainability, transport policy
Procedia PDF Downloads 816 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 65 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1504 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”
Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid
Abstract:
Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps
Procedia PDF Downloads 4783 Open Science Philosophy, Research and Innovation
Authors: C.Ardil
Abstract:
Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data
Procedia PDF Downloads 1312 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy
Authors: Anisa Suraya Ab Razak, Izza Hayat
Abstract:
Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia
Procedia PDF Downloads 1221 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste
Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami
Abstract:
The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization
Procedia PDF Downloads 66