Search results for: brand identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3379

Search results for: brand identification

3169 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 180
3168 Identifying Promoters and Their Types Based on a Two-Layer Approach

Authors: Bin Liu

Abstract:

Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.

Keywords: promoter, promoter type, random forest, sequence information

Procedia PDF Downloads 184
3167 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu

Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran

Abstract:

Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.

Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu

Procedia PDF Downloads 419
3166 Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity

Authors: Rickard Grassman

Abstract:

In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context.

Keywords: Lacan, identification, discourse, desire, loss

Procedia PDF Downloads 95
3165 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 123
3164 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
3163 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising

Authors: Mokhlisur Rahman

Abstract:

Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.

Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer

Procedia PDF Downloads 68
3162 Empirical Investigation of Antecedents of Perceived Recovery Service Quality: Evidence from Retail Banking in United Arab Emirates

Authors: Vimi Jham

Abstract:

The banking sector has undergone tremendous change in all forms of service it provides to its customers. The efforts of the banks is to avoid customer defection and lead to customer satisfaction. The purpose of the study was to examine the linkages among the constructs such as customer perceived service quality, perceived service recovery quality and customer satisfaction in the banking industry. The moderating effect of negative brand perception due to service failure on recovery satisfaction were investigated. Random sampling methods are used to draw the sample from the population. Data was collected from 262 banking customers and were analyzed with the help of structural equation modelling approach using Smart PLS to understand the relationship among variables being studied. The results of the study contribute to the research by proving that customer service recovery satisfaction is dependent on customer perceived service quality and the moderating effect of negative brand perception due to service failure was insignificant.

Keywords: service recovery satisfaction, perceived service recovery quality, perceived service quality, structural equation modelling

Procedia PDF Downloads 284
3161 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 316
3160 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites

Authors: Mehran Nasiri, Ardeshir Poornemat

Abstract:

The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.

Keywords: current situation, talent finding, ideal situation, instructors (AFC)

Procedia PDF Downloads 213
3159 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 532
3158 Identification of Lactic Acid Bacteria Isolated from Raw Camel Milk Produced in South of Morocco

Authors: Maha Alaoui Ismaili, Bouchta Saidi, Mohamed Zahar, Abed Hamama

Abstract:

112 lactic isolates were obtained from 15 samples of camel raw milk produced in Laayoune Boujdour Sakia-El Hamra region (South of Morocco). The main objective was the identification of species of lactic flora belonging to Lactococcus, Lactobacillus and Leuconostoc. Data obtained showed predominance of cocci among lactic isolates (86.6%) while lactic rods represented only 13.4%. With regard to genera identified, Enterococcus was the mostly found out (53.57%), followed by Lactococcus (28.57%), Lactobacillus (13.4%) and Leuconostoc (4.4 %). Identification of the lactic isolates according to their morphological, physiological, and biochemical characteristics led to differentiating 11 species with Lactococcus lactis ssp lactis biovar diacetylactis being the mostly encountered (24.1%) followed by Lactobacillus brevis (3.57%), Lactobacillus plantarum (3.57%), Lactobacillus delbrueckii subsp lactis (3.57%) and Lactococcus lactis subsp cremoris (2.67%).

Keywords: raw camel milk, south of morocco, lactic acid bacteria, identification

Procedia PDF Downloads 492
3157 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 231
3156 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 309
3155 Evidence of the Effect of the Structure of Social Representations on Group Identification

Authors: Eric Bonetto, Anthony Piermatteo, Fabien Girandola, Gregory Lo Monaco

Abstract:

The present contribution focuses on the effect of the structure of social representations on group identification. A social representation (SR) is defined as an organized and structured set of cognitions, produced and shared by members of a same group about a same social object. Within this framework, the central core theory establishes a structural distinction between central cognitions – or 'core' – and peripheral ones: the former are theoretically considered as more connected than the later to group members’ social identity and may play a greater role in SRs’ ability to allow group identification by means of a common vision of the object of representation. Indeed, the central core provides a reference point for the in-group as it constitutes a consensual vision that gives meaning to a social object particularly important to individuals and to the group. However, while numerous contributions clearly refer to the underlying role of SRs in group identification, there are only few empirical evidences of this aspect. Thus, we hypothesize an effect of the structure of SRs on group identification. More precisely, central cognitions (vs. peripheral ones) will lead to a stronger group identification. In addition, we hypothesize that the refutation of a cognition will lead to a stronger group identification than its activation. The SR mobilized here is that of 'studying' among a population of first-year undergraduate psychology students. Thus, a pretest (N = 82), using an Attribute-Challenge Technique, was designed in order to identify the central and the peripheral cognitions to use in the primings of our main study. The results of this pretest are in line with previous studies. Then, the main study (online; N = 184), using a social priming methodology, was based on a 2 (Structural status of the cognitions belonging to the prime: central vs. peripheral) x 2 (Type of prime: activation vs. refutation) experimental design in order to test our hypotheses. Results revealed, as expected, the main effect of the structure of the SR on group identification. Indeed, central cognitions trigger a higher level of identification than the peripheral ones. However, we observe neither effect of the type of prime, nor interaction effect. These results experimentally demonstrate for the first time the effect of the structure of SRs on group identification and indicate that central cognitions are more connected than peripheral ones to group members’ social identity. These results will be discussed considering the importance of understanding identity as a function of SRs and on their ability to potentially solve the lack of consideration of the definition of the group in Social Representations Theory.

Keywords: group identification, social identity, social representations, structural approach

Procedia PDF Downloads 191
3154 Radio Frequency Identification Chips in Colour Preference Tracking

Authors: A. Ballard

Abstract:

The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.

Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference

Procedia PDF Downloads 120
3153 Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens

Authors: Ayman El Behiry, Rasha Nabil Zahran, Reda Tarabees, Eman Marzouk, Musaad Al-Dubaib

Abstract:

Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.

Keywords: identification, mastitis pathogens, mass spectral, phenotypical

Procedia PDF Downloads 332
3152 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 249
3151 The Effect of Organizational Virtuousness on Nurses' Organizational Identification Level and Performance: The Mediating Role of Perceived Organizational Support

Authors: Feride Eskin Bacaksiz, Aytolan Yildirim

Abstract:

Practices voluntarily performed by organizations for their employees well-being, create an emotional imperative for employees in accordance with reciprocity norm. Changes in desired course occur in organizational outputs and attitudes towards organization among employees perceiving their organizations as virtuous and supportive. The aim of this study was to examine the effect of organizational virtuousness on performance and organizational identification levels of employees and mediating role of perceived organizational support in this relationship. The data of this descriptive and methodological study were collected from 336 nurses working in a public university hospital in 2015. Participant information form, Organizational Virtuousness, Perceived Organizational Support, Organizational Identification, and Employee Performance scales were used to collect the data. Descriptive, correlative, psychometric analyses and Structural Equation Modeling were performed for the data analysis. Most of the participants were female, under 30 years of age, graduated degrees and staff nurse. Mean scores obtained by the participants from scales were calculated as 3.43(SD=.99) for organizational virtuousness, 2.99 (SD=1.16) for perceived organizational support, 3.18 (SD=1.03) for organizational identification and 3.84 (SD=0.66) for employee performance. It was found that correlation between organizational virtuousness and employee performance regressed from r=0.64 to r=-0.01 and correlation between organizational virtuousness and organizational identification regressed from r=0.55 to r=-0.16 and became statistically non-significant (p < 0.05) via mediating role of perceived organizational support. According to the results, perceived organizational support assumes full mediation on the impact of organizational virtues of employee performance and organizational identification levels. Therefore, organizations, which intend to positively affect employees attitudes towards organization and their performance, should both extend organizational virtuous activities and affect perceptions of employees; whereas, employees should perceive that they are supported by their organization.

Keywords: employee performance, organizational identification, organizational virtuousness, perceived organizational support

Procedia PDF Downloads 364
3150 The Effects of 2016 Rio Olympics as Nation's Soft Power Strategy

Authors: Keunsu Han

Abstract:

Sports has been used as a valuable tool for countries to enhance brand image and to pursue higher political interests. Olympic games are one of the best examples as a mega sport event to achieve such nations’ purposes. The term, “soft power,” coined by Nye, refers to country’s ability to persuade and attract foreign audiences through non-coercive ways such as cultural, diplomatic, and economic means. This concept of soft power provides significant answers about why countries are willing to host a mega sport event such as Olympics. This paper reviews the concept of soft power by Nye as a theoretical framework of this study to understand critical motivation for countries to host Olympics and examines the effects of 2016 Rio Olympics as the state’s soft power strategy. Thorough data analysis including media, government and private-sector documents, this research analyzes both negative and positive aspects of the nation’s image created during Rio Olympics and discusses the effects of Rio Olympics as Brazil’s chance to showcase its soft power by highlighting the best the state has to present.

Keywords: country brand, olympics, soft power, sport diplomacy, mega sport event

Procedia PDF Downloads 459
3149 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
3148 Gc-ms Data Integrated Chemometrics for the Authentication of Vegetable Oil Brands in Minna, Niger State, Nigeria

Authors: Rasaq Bolakale Salau, Maimuna Muhammad Abubakar, Jonathan Yisa, Muhammad Tauheed Bisiriyu, Jimoh Oladejo Tijani, Alexander Ifeanyi Ajai

Abstract:

Vegetables oils are widely consumed in Nigeria. This has led to competitive manufacture of various oil brands. This leads increasing tendencies for fraud, labelling misinformation and other unwholesome practices. A total of thirty samples including raw and corresponding branded samples of vegetable oils were collected. The Oils were extracted from raw ground nut, soya bean and oil palm fruits. The GC-MS data was subjected to chemometric techniques of PCA and HCA. The SOLO 8.7 version of the standalone chemometrics software developed by Eigenvector research incorporated and powered by PLS Toolbox was used. The GCMS fingerprint gave basis for discrimination as it reveals four predominant but unevenly distributed fatty acids: Hexadecanoic acid methyl ester (10.27- 45.21% PA), 9,12-octadecadienoic acid methyl ester (10.9 - 45.94% PA), 9-octadecenoic acid methyl ester (18.75 - 45.65%PA), and Eicosanoic acid methyl ester (1.19% - 6.29%PA). In PCA modelling, two PCs are retained at cumulative variance captured at 73.15%. The score plots indicated that palm oil brands are most aligned with raw palm oil. PCA loading plot reveals the signature retention times between 4.0 and 6.0 needed for quality assurance and authentication of the oils samples. They are of aromatic hydrocarbons, alcohols and aldehydes functional groups. HCA dendrogram which was modeled using Euclidian distance through Wards method, indicated co-equivalent samples. HCA revealed the pair of raw palm oil brand and palm oil brand in the closest neighbourhood (± 1.62 % A difference) based on variance weighted distance. It showed Palm olein brand to be most authentic. In conclusion, based on the GCMS data with chemometrics, the authenticity of the branded samples is ranked as: Palm oil > Soya oil > groundnut oil.

Keywords: vegetable oil, authenticity, chemometrics, PCA, HCA, GC-MS

Procedia PDF Downloads 31
3147 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: speaker identification, acoustic-spectrographic method, non-native speech, performance evaluation

Procedia PDF Downloads 446
3146 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
3145 Acoustic Analysis for Comparison and Identification of Normal and Disguised Speech of Individuals

Authors: Surbhi Mathur, J. M. Vyas

Abstract:

Although the rapid development of forensic speaker recognition technology has been conducted, there are still many problems to be solved. The biggest problem arises when the cases involving disguised voice samples come across for the purpose of examination and identification. Such type of voice samples of anonymous callers is frequently encountered in crimes involving kidnapping, blackmailing, hoax extortion and many more, where the speaker makes a deliberate effort to manipulate their natural voice in order to conceal their identity due to the fear of being caught. Voice disguise causes serious damage to the natural vocal parameters of the speakers and thus complicates the process of identification. The sole objective of this doctoral project is to find out the possibility of rendering definite opinions in cases involving disguised speech by experimentally determining the effects of different disguise forms on personal identification and percentage rate of speaker recognition for various voice disguise techniques such as raised pitch, lower pitch, increased nasality, covering the mouth, constricting tract, obstacle in mouth etc by analyzing and comparing the amount of phonetic and acoustic variation in of artificial (disguised) and natural sample of an individual, by auditory as well as spectrographic analysis.

Keywords: forensic, speaker recognition, voice, speech, disguise, identification

Procedia PDF Downloads 368
3144 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

Authors: Rebecca Angeles

Abstract:

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis

Procedia PDF Downloads 444
3143 Influencer Marketing, Fan Satisfaction, Team Identification and Purchase Intention and Different Effects of Influencer Marketing: Influencer’s Personal Attributes and Their Add-value to Baseball Games

Authors: Shih-Ting Fu

Abstract:

This study aimed to investigate the influence of influencer marketing on fan satisfaction, purchase intention, and team identification. The research employed a questionnaire survey targeting the Chinese Professional Baseball League (CPBL). The sample included 205 participants, encompassing both existing CPBL fans and individuals with no prior baseball viewing habits. The survey assessed the impact of influencer marketing on participants' knowledge, attitudes, and behaviors related to the CPBL. Additionally, it evaluated team identification, fan satisfaction, and purchase intention. Data analysis using SPSS software aimed to identify correlations and effects among the variables. Findings revealed that influencer marketing has a significant positive impact on fan satisfaction, purchase intention, and team identification. Notably, further analysis indicated that the personal characteristics and charisma of influencers significantly influenced fans' perceptions, leading to increased purchase intention and satisfaction. This effect was even stronger than the influence of influencers' expertise and information dissemination regarding sports events or products.

Keywords: influencer marketing, fan satisfaction, team identification, purchase intention, Chinese professional baseball league (CPBL)

Procedia PDF Downloads 34
3142 Technical Parameters Evaluation for Caps to Apucarana/Parana - Brazil APL

Authors: Cruz, G. P., Nagamatsu, R. N., Scacchetti, F. A. P., Merlin, F. K.

Abstract:

This study aims to assess a set of technical parameters that provide quality products to the companies that produce caps, APL Apucarana / PR, the city that produces most Brazilian caps, in order to verify the potential of Brazilian caps to compete with international brands, recognized by the standard of excellence when it comes to quality of its products. The determination of the technical parameters was arbitrated from textile ABNT, a total of six technical parameters, providing eight tests for cotton caps. For the evaluation, we used as reference a leading brand recognized worldwide (based on their sales volume in $) for comparison with 3 companies of the APL Apucarana. The results showed that, of the 8 tests, of 8 tests, the companies Apucarana did not obtain better performance than the competitor. They obtained the same results in three tests and lower performance in 5. Given these values, it is concluded that local caps are not far from reaching the quality of leading brand. It is recommended that the APL companies use the parameters to evaluate their products, using this information to support decision-making that seek to improve both the product design and its production process, enabling the feasibility for faster international recognition . Thus, they may have an edge over its main competitor.

Keywords: technical parameters, making caps, quality, evaluation

Procedia PDF Downloads 345
3141 The Nation as Brand: Postcolonial Construction of National Identity in Late 20th/21st Century Qatar

Authors: Ryunhye Kim

Abstract:

Despite its relatively short history as an independent state, Qatar has emerged as a highly regarded Gulf state and global power. Since its independence in September 1971, the state has employed deliberate policy initiatives designed to put Qatar on the map and distinguish it from other Gulf states. Because Qatar and its neighbors are resource-poor apart from energy, whoever is first to introduce a unique aspect of branding not only takes the lead but assumes what is often an insurmountable advantage. This study examines three specific modes of branding undertaken by Qatar: (1) energy policies to utilize its natural gas to become a dominant supplier; (2) the deliberate construction of a distinct cultural brand utilizing sports, architecture, museums, and media; and (3) ‘niche diplomacy’ to serve as a mediator in regional and intra-national conflicts, especially as interlocutor between the United States and Arab regimes and Muslim groups. Gleaning data from a range of sources, this study analyzes the effectiveness and significance of Qatar’s place branding on the global stage, as well as potential disadvantages and limits in this branding, including problems encountered before and after the ‘Qatar crisis.’

Keywords: national branding, national-identity, Qatar, soft-power

Procedia PDF Downloads 152
3140 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan

Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas

Abstract:

The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.

Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1

Procedia PDF Downloads 169