Search results for: Qian Xiang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 191

Search results for: Qian Xiang

11 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 128
10 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 248
9 Family Resilience of Children with Cancer: A Latent Profile Analysis

Authors: Bowen Li, Dan Shu, Shiguang Pang, Li Wang, Qian Liu

Abstract:

Background: Every year, approximately 429,000 adolescents aged 0-19 are diagnosed with cancer worldwide. The diagnosis brings about substantial psychological pressure and caregiving responsibilities for family members and impacts the families significantly. Family resilience has been found to reduce caregiver distress and can also foster post-traumatic growth in cancer survivors. However, current research on family resilience in childhood cancer mainly focuses on individual caregiver resilience and child adaptation, with less attention given to categorizing family resilience among caregivers of children with cancer. Method: A total of 292 caregivers of children with cancer were recruited from four tertiary hospitals in central China from July 2022 to March 2024. This study was approved by the ethics committee, and participants provided informed consent, with the option to withdraw at any time. The Family Resilience Assessment Scale was used to measure family resilience among caregivers of children with cancer. The Quality of Life scale-family, The Perceived Social Support Scale, and The Connor-Davidson Resilience Scale were used to measure potential influencing factors. This study used latent profile analysis (LPA) to identify latent categories of family resilience among caregivers of children with cancer. Binary logistic regression was used to analyze the influencing factors of family resilience. Results: The results reveal two distinct categories: "high family resilience" and "low family resilience." "Low family resilience" group accounts for 85.96% of the total while "high family resilience" group is 14.04%. "High family resilience" scores higher across all dimensions compared to "low family resilience". Within-group comparisons reveals that "family communication and problem-solving" and "empowering the meaning of adversity" received the highest scores, while "utilizing social and economic resources" scores the lowest. "Maintaining a positive attitude" scores similarly high to "family communication and problem-solving" in the high family resilience group, whereas it scores similarly low to "utilizing social and economic resources" in the low family resilience group. In single-factor analysis, residence, number of siblings, caregiver's education level, resilience, social support, quality of life, physical well-being and psychological well-being showed significant difference between two categories. In binary logistic regression analysis, households with only one child are more likely to exhibit low family resilience, whereas high personal resilience is associated with a high level of family resilience. Conclusion: Most families with children suffering from cancer require strengthened family resilience. Support for utilizing socio-economic resources is important for both high and low family resilience families. Single-child families and caregivers with lower resilience require more attention. These findings imply the development of targeted interventions to enhance family resilience among families with children of cancer. Future studies could involve children and other family members for a comprehensive understanding of family resilience. Longitudinal studies are necessary to explore the dynamic changes in family resilience throughout the cancer journey.

Keywords: cancer children, caregivers, family resilience, latent profile analysis

Procedia PDF Downloads 15
8 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame

Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin

Abstract:

The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.

Keywords: FACTS, multi-space-time frame, optimal control, TCSC

Procedia PDF Downloads 242
7 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 78
6 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 116
5 Promoting Resilience in Adolescents: Integrating Adolescent Medicine and Child Psychology Perspectives

Authors: Xu Qian

Abstract:

This abstract examines the concept of resilience in adolescents from both adolescent medicine and child psychology perspectives. It discusses the role of healthcare providers in fostering resilience among adolescents, encompassing physical, psychological, and social aspects. The paper highlights evidence-based interventions and practical strategies for promoting resilience in this population. Introduction: Resilience plays a crucial role in the healthy development of adolescents, enabling them to navigate through the challenges of this transitional period. This abstract explores the concept of resilience from the perspectives of adolescent medicine and child psychology, shedding light on the collective efforts of healthcare providers in fostering resilience. By integrating the principles and practices of these two disciplines, this abstract emphasizes the multidimensional nature of resilience and its significance in the overall well-being of adolescents. Methods: A comprehensive literature review was conducted, encompassing research articles, empirical studies, and expert opinions from both adolescent medicine and child psychology fields. The search included databases such as PubMed, PsycINFO, and Google Scholar, focusing on publications from the past decade. The review aimed to identify evidence-based interventions and practical strategies employed by healthcare providers to promote resilience among adolescents. Results: The review revealed several key findings regarding the promotion of resilience in adolescents. Firstly, resilience is a dynamic process influenced by individual characteristics, environmental factors, and the interaction between the two. Secondly, healthcare providers play a critical role in fostering resilience by addressing the physical, psychological, and social needs of adolescents. This entails comprehensive healthcare services that integrate medical care, mental health support, and social interventions. Thirdly, evidence-based interventions such as cognitive-behavioral therapy, social skills training, and positive youth development programs have shown promising outcomes in enhancing resilience. Discussion: The integration of adolescent medicine and child psychology perspectives provides a comprehensive framework for promoting resilience in adolescents. By acknowledging the interplay between physical health, psychological well-being, and social functioning, healthcare providers can tailor interventions to address the specific needs and challenges faced by adolescents. Collaborative efforts between medical professionals, psychologists, educators, and families are vital in creating a supportive environment that fosters resilience. Additionally, the findings highlight the importance of early identification and intervention, emphasizing the need for routine screening and assessment to identify adolescents at risk and provide timely support. Conclusion: Promoting resilience in adolescents requires a holistic approach that integrates adolescent medicine and child psychology perspectives. By recognizing the multifaceted nature of resilience, healthcare providers can implement evidence-based interventions and practical strategies to enhance the well-being of adolescents. The collaboration between healthcare professionals from different disciplines, alongside the involvement of families and communities, is crucial for creating a resilient support system. By investing in the promotion of resilience during adolescence, we can empower young individuals to overcome adversity and thrive in their journey toward adulthood.

Keywords: psychology, clinical psychology, child psychology, adolescent psychology, adolescent

Procedia PDF Downloads 52
4 LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia

Authors: Adenike Adesanya, Nonthaphat Wong, Xiang-Yun Lan, Shea Ping Yip, Chien-Ling Huang

Abstract:

Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs.

Keywords: chronic myeloid leukemia, imatinib resistance, lncRNA-miRNA-mRNA, T315I mutation

Procedia PDF Downloads 129
3 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 282
2 Nurturing Resilient Families: Strategies for Positive Parenting and Emotional Well-Being

Authors: Xu Qian

Abstract:

This abstract explores the importance of building resilience within families and offers evidence-based strategies for promoting positive parenting and enhancing emotional well-being. It emphasizes the role of effective communication, conflict resolution, and fostering a supportive environment to strengthen family bonds and promote healthy child development. Introduction: The well-being and resilience of families play a crucial role in fostering healthy child development and promoting overall emotional well-being. This abstract highlights the significance of nurturing resilient families and provides evidence-based strategies for positive parenting. By focusing on effective communication, conflict resolution, and creating a supportive environment, families can strengthen their bonds and enhance emotional well-being for both parents and children. Methods: This abstract draws upon a comprehensive review of existing research and literature on resilient families, positive parenting, and emotional well-being. The selected studies employ various methodologies, including surveys, interviews, and longitudinal observations, to investigate the factors contributing to family resilience and the strategies that promote positive parenting practices. The findings from these studies serve as the foundation for the strategies discussed in this abstract. Results: The results of the reviewed studies demonstrate that effective communication within families is a key factor in building resilience and promoting emotional well-being. Open and honest communication allows family members to express their thoughts, feelings, and concerns, fostering trust and understanding. Conflict resolution skills, such as active listening, compromise, and problem-solving, are vital in managing conflicts constructively and preventing negative consequences on family dynamics and children's well-being. Creating a supportive environment that nurtures emotional well-being is another critical aspect of promoting resilient families. This includes providing emotional support, setting clear boundaries, and promoting positive discipline strategies. Research indicates that consistent and responsive parenting approaches contribute to improved self-regulation skills, emotional intelligence, and overall mental health in children. Discussion: The discussion centers on the implications of these findings for promoting positive parenting and emotional well-being. It emphasizes the need for parents to prioritize self-care and seek support when facing challenges. Parental well-being directly influences the quality of parenting and the overall family environment. By attending to their own emotional needs, parents can better meet the needs of their children and create a nurturing atmosphere. Furthermore, the importance of fostering resilience in children is highlighted. Resilient children are better equipped to cope with adversity, adapt to change, and thrive in challenging circumstances. By cultivating resilience through supportive relationships, encouragement of independence, and providing opportunities for growth, parents can foster their children's ability to bounce back from setbacks and develop essential life skills. Conclusion: In conclusion, nurturing resilient families is crucial for positive parenting and enhancing emotional well-being. This abstract presents evidence-based strategies that emphasize effective communication, conflict resolution, and creating a supportive environment. By implementing these strategies, parents can strengthen family bonds, promote healthy child development, and enhance overall family resilience. Investing in resilient families not only benefits individual family members but also contributes to the well-being of the broader community.

Keywords: childrearing families, family education, children's mental health, positive parenting, emotional health

Procedia PDF Downloads 61
1 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis

Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou

Abstract:

Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.

Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration

Procedia PDF Downloads 114