Search results for: Cholistan desert
8 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 3007 Petrograpgy and Major Elements Chemistry of Granitic rocks of the Nagar Parkar Igneous Complex, Tharparkar, Sindh
Authors: Amanullah Lagharil, Majid Ali Laghari, M. Qasim, Jan. M., Asif Khan, M. Hassan Agheem
Abstract:
The Nagar Parkar area in southeastern Sindh is a part of the Thar Desert adjacent to the Runn of Kutchh, and covers 480 km2. It contains exposures of a variety of igneous rocks referred to as the Nagar Parkar Igneous Complex. The complex comprises rocks belonging to at least six phases of magmatism, from oldest to youngest: 1) amphibolitic basement rocks, 2) riebeckite-aegirine grey granite, 3) biotite-hornblende pink granite, 4) acid dykes, 5) rhyolite “plugs”, and basic dykes (Jan et al., 1997). The last three of these are not significant in volume. Radiometric dates are lacking but the grey and pink granites are petrographically comparable to the Siwana and Jalore plutons, respectively, emplaced in the Malani volcanic series. Based on these similarities and proximity, the phase 2 to 6 bodies in the Nagar Parkar may belong to the Late Proterozoic (720–745 Ma) Malani magmatism that covers large areas in western Rajasthan. Khan et al. (2007) have reported a 745 ±30 – 755 ±22 Ma U-Th-Pb age on monazite from the pink granite. The grey granite is essentially composed of perthitic feldspar (microperthite, mesoperthite), quartz, small amount of plagioclase and, characteristically, sodic minerals such as riebeckite and aegirine. A few samples lack aegirine. Fe-Ti oxide and minute, well-developed crystals of zircon occur in almost all the studied samples. Tourmaline, fluorite, apatite and rutile occur in only some samples and astrophyllite is rare. Allanite, sphene and leucoxene occur as minor accessories along with local epidote. The pink granite is mostly leucocratic, but locally rich in biotite (up to 7 %). It is essentially made up of microperthite and quartz, with local microcline, and minor plagioclase (albite-oligoclase). Some rocks contain sufficient oligoclase and can be called adamellite or quartz mozonite. Biotite and hornblende are main accessory minerals along with iron oxide, but in a few samples are without hornblende. Fayalitic olivine, zircon, sphene, apatite, tourmaline, fluorite, allanite and cassiterite occur as sporadic accessory minerals. Epidote, carbonate, sericite and muscovite are produced due to the alteration of feldspar. This work concerns the major element geochemistry and comparison of the principal granitic rocks of Nagar Parkar. According to the scheme of De La Roche et al. (1980), majority of the grey and pink granites classify as alkali granite, 20 % as granite and 10 % as granodiorite. When evaluated on the basis of Shand's indices (after Maniar and Piccoli, 1989), the grey and pink granites span all three fields (peralkaline, metaluminous and peraluminous). Of the analysed grey granites, 67 % classify as peralkaline, 20 % as peraluminous and 10 % as metaluminous, while 50 % of pink granites classify as peralkaline, 30 % metaluminous and 20 % peraluminous.Keywords: petrography, nagar parker, granites, geological sciences
Procedia PDF Downloads 4596 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach
Authors: Laura N. Bolivar T.
Abstract:
The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.Keywords: innovative strategy, local development, network of tourism actors, tourism cluster
Procedia PDF Downloads 1425 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management
Authors: Walter W. Loo
Abstract:
China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.Keywords: greenhouses, no discharge, remediation of soil and water, wastewater
Procedia PDF Downloads 3454 Red Dawn in the Desert: A World-Systems Analysis of the Maritime Silk Road Initiative
Authors: Toufic Sarieddine
Abstract:
The current debate on the hegemonic impact of China’s Belt and Road Initiative (BRI) is of two opposing strands: Resilient and absolute US hegemony on the one hand and various models of multipolar hegemony such as bifurcation on the other. Bifurcation theories illustrate an unprecedented division of hegemonic functions between China and the US, whereby Beijing becomes the world’s economic hegemon, leaving Washington the world’s military hegemon and security guarantor. While consensus points to China being the main driver of unipolarity’s rupturing, the debate among bifurcationists is on the location of the first rupture. In this regard, the Middle East and North Africa (MENA) region has seen increasing Chinese foreign direct investment in recent years while that to other regions has declined, ranking it second in 2018 as part of the financing for the Maritime Silk Road Initiative (MSRI). China has also become the top trade partner of 11 states in the MENA region, as well as its top source of machine imports, surpassing the US and achieving an overall trade surplus almost double that of Washington’s. These are among other features outlined in world-systems analysis (WSA) literature which correspond with the emergence of a new hegemon. WSA is further utilized to gauge other facets of China’s increasing involvement in MENA and assess whether bifurcation is unfolding therein. These features of hegemony include the adoption of China’s modi operandi, economic dominance in production, trade, and finance, military capacity, cultural hegemony in ideology, education, and language, and the promotion of a general interest around which to rally potential peripheries (MENA states in this case). China’s modi operandi has seen some adoption with regards to support against the United Nations Convention on the Law of the Sea, oil bonds denominated in the yuan, and financial institutions such as the Shanghai Gold Exchange enjoying increasing Arab patronage. However, recent elections in Qatar, as well as liberal reforms in Saudi Arabia, demonstrate Washington’s stronger normative influence. Meanwhile, Washington’s economic dominance is challenged by China’s sizable machine exports, increasing overall imports, and widening trade surplus, but retains some clout via dominant arms and transport exports, as well as free-trade deals across the region. Militarily, Washington bests Beijing’s arms exports, has a dominant and well-established presence in the region, and successfully blocked Beijing’s attempt to penetrate through the UAE. Culturally, Beijing enjoys higher favorability in Arab public opinion, and its broadcast networks have found some resonance with Arab audiences. In education, the West remains MENA students’ preferred destination. Further, while Mandarin has become increasingly available in schools across MENA, its usage and availability still lag far behind English. Finally, Beijing’s general interest in infrastructure provision and prioritizing economic development over social justice and democracy provides an avenue for increased incorporation between Beijing and the MENA region. The overall analysis shows solid progress towards bifurcation in MENA.Keywords: belt and road initiative, hegemony, Middle East and North Africa, world-systems analysis
Procedia PDF Downloads 1093 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture
Authors: Zakia Hbellaq
Abstract:
The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants
Procedia PDF Downloads 1632 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona
Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz
Abstract:
Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.Keywords: census, empirical modeling, heat-related morbidity, spatial analysis
Procedia PDF Downloads 1281 Kuwait Environmental Remediation Program: Fresh Groudwater Risk Assessement from Tarcrete Material across the Raudhatain and Sabriyah Oil Fields, North Kuwait
Authors: Nada Al-Qallaf, Aisha Al-Barood, Djamel Lekmine, Srinivasan Vedhapuri
Abstract:
Kuwait Oil Company (KOC) under the supervision of Kuwait National Focal Point (KNFP) is planning to remediate 26 million (M) m3 of oil-contaminated soil in oil fields of Kuwait as a direct and indirect fallout of the Gulf War during 1990-1991. This project is funded by the United Nations Compensation Commission (UNCC) under the Kuwait Environmental Remediation Program (KERP). Oil-contamination of the soil occurred due to the destruction of the oil wells and spilled crude oil across the land surface and created ‘oil lakes’ in low lying land. Aerial fall-out from oil spray and combustion products from oil fires combined with the sand and gravel on the ground surface to form a layer of hardened ‘Tarcrete’. The unique fresh groundwater lenses present in the Raudhatain and Sabriya subsurface areas had been impacted by the discharge and/or spills of dissolved petroleum constituents. These fresh groundwater aquifers were used for drinking water purposes until 1990, prior to invasion. This has significantly damages altered the landscape, ecology and habitat of the flora and fauna and in Kuwait Desert. Under KERP, KOC is fully responsible for the planning and execution of the remediation and restoration projects in KOC oil fields. After the initial recommendation of UNCC to construct engineered landfills for containment and disposal of heavily contaminated soils, two landfills were constructed, one in North Kuwait and another in South East Kuwait of capacity 1.7 million m3 and 0.5 million m3 respectively. KOC further developed the Total Remediation Strategy in conjunction with KNFP and has obtained UNCC approval. The TRS comprises of elements such as Risk Based Approach (RBA), Bioremediation of low Contaminated Soil levels, Remediation Treatment Technologies, Sludge Disposal via Beneficial Recycling or Re-use and Engineered landfills for Containment of untreatable materials. Risk Based Assessment as a key component to avoid any unnecessary remedial works, where it can be demonstrated that human health and the environment are sufficiently protected in the absence of active remediation. This study demonstrates on the risks of tarcrete materials spread over areas 20 Km2 on the fresh Ground water lenses/catchment located beneath the Sabriyah and Raudhatain oil fields in North Kuwait. KOC’s primary objective is to provide justification of using RBA, to support a case with the Kuwait regulators to leave the tarcrete material in place, rather than seek to undertake large-scale removal and remediation. The large-scale coverage of the tarcrete in the oil fields and perception that the residual contamination associated with this source is present in an environmentally sensitive area essentially in ground water resource. As part of this assessment, conceptual site model (CSM) and complete risk-based and fate and transport modelling was carried out which includes derivation of site-specific assessment criteria (SSAC) and quantification of risk to identified waters resource receptors posed by tarcrete impacted areas. The outcome of this assessment was determined that the residual tarcrete deposits across the site area shall not create risks to fresh groundwater resources and the remedial action to remove and remediate the surficial tarcrete deposits is not warranted.Keywords: conceptual site model, fresh groundwater, oil-contaminated soil, tarcrete, risk based assessment
Procedia PDF Downloads 175