Search results for: Fisher Scoring Algorithm
2047 Logical-Probabilistic Modeling of the Reliability of Complex Systems
Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia
Abstract:
The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out.Keywords: complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability of systems, “weights” of elements
Procedia PDF Downloads 682046 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study
Authors: Mateusz Wielopolski, Asia Guerreschi
Abstract:
Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay
Procedia PDF Downloads 2032045 Improving the Competency of Undergraduate Nursing Students in Addressing a Timely Public Health Issue
Authors: Tsu-Yin Wu, Jenni Hoffman, Lydia McMurrows, Sarah Lally
Abstract:
Recent events of the Flint Water Crisis and elevated lead levels in Detroit public school water have highlighted a specific public health disparity and shown the need for better education of healthcare providers on lead education. Identifying children and pregnant women with a high risk for lead poisoning and ensuring lead testing is completed is critical. The purpose of this study is to explore the impact of an educational intervention on knowledge and confidence levels among nursing students enrolled in the prelicensure Bachelor of Science in Nursing (BSN) and Registered Nurse to BSN program (R2B). The study used both quantitative and qualitative research methods to assess the impact of multi-modal pedagogy on knowledge and confidence of lead screening and prevention among prelicensure and R2B nursing students. The students received lead poisoning and prevention content in addition to completing an e-learning module developed by the Pediatric Environmental Health Specialty Units. A total of 115 students completed the pre-and post-test instrument that consisted of demographic, lead knowledge, and confidence items. Despite the increase of total knowledge, three dimensions of lead poisoning, and confidence from pre- to post-test scores for both groups, there was no statistical significance on the increase between prelicensure and R2B students. Thematic analysis of qualitative data showed five themes from participants' learning experiences: lead exposure, signs and symptoms of lead poisoning, screening and diagnosis, prevention, and policy and statewide issues. The study is limited by a small sample and participants recalling some correct answers from the pretest, thus, scoring higher on the post-test. The results contribute to the minimally existent literature examining a critical public health concern regarding lead health exposure and prevention education of nursing students. Incorporating such content area into the nursing curriculum is essential in ensuring that such public health disparities are mitigated.Keywords: lead poisoning, emerging public health issue, community health, nursing edducation
Procedia PDF Downloads 2002044 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1592043 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks
Authors: Zeyad Abdelmageid, Xianbin Wang
Abstract:
Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead
Procedia PDF Downloads 1222042 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 3252041 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception
Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom
Abstract:
Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots
Procedia PDF Downloads 1982040 Correlative Study of Serum Interleukin-18 and Disease Activity, Functional Disability and Quality of Life in Rheumatoid Arthritis Patients
Authors: Hamdy Khamis Korayem, Manal Yehia Tayel, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Shimaa Badr Abdelnaby Badr
Abstract:
The aim of the current study was to demonstrate whether serum Interleukin-18 (IL-18) is increased in rheumatoid arthritis (RA) and its correlation with disease activity, functional disability and quality of life in RA patients. The study included 30 RA patients and 20 healthy normal control subjects. The RA patients were diagnosed according to the 2010 ACR/EULAR classification criteria for RA with the exclusion of those who had diabetes mellitus, endocrine disorders, associated rheumatologic diseases, viral hepatitis B or C and other diseases with increased serum IL-18 level. All patients were subjected to clinical evaluation of the musculoskeletal system. Disease activity was assessed by disease activity score 28 with 4 variables (DAS 28). Functional disability was assessed by health assessment questionnaire disability index (HAQ-DI). The quality of life was assessed by Short form-36 (SF-36) questionnaire. Radiological assessment of both hands and feet by Sharp/van der Heijde (SvH) scoring method. Laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) were assessed in patients and serum level of IL-18 in both patients and control subjects. There was no statistically significant difference between patient and control group as regards age and sex. Among patients, 29 % were females and the age range was between 25 to 55 years. Extra-articular manifestations were presented in 56.7% of the patients. The mean of DAS 28 score was 5.73±1.46 and that of HAQ-DI was 1.22±0.72 while that of SF-36 was 40.03±13.96. The level of serum IL-18 was significantly higher in patients than in the control subjects (P= 0.030). Serum IL-18 was correlated with ACPA among the patient group. There were no statistically significant correlations between serum IL-18 and DAS28, HAQ-DI, SF-36, total SvH score and the other laboratory results. In conclusion, IL-18 is significantly higher in RA patient than in healthy control subjects and positively correlated with ACPA level. IL-18 is associated with extra-articular manifestations. However, it is not correlated with other laboratory parameters, disease activity, functional disability, quality of life nor radiological severity.Keywords: disease activity score, Interleukin-18, quality of life assessment, rheumatoid arthritis
Procedia PDF Downloads 3292039 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage
Procedia PDF Downloads 2792038 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm
Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra
Abstract:
With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction
Procedia PDF Downloads 1282037 Evaluation of Associated Risk Factors and Determinants of near Miss Obstetric Cases at B.P. Koirala Institute of Health Sciences, Dharan
Authors: Madan Khadka, Dhruba Uprety, Rubina Rai
Abstract:
Background and objective: In 2011, around 273,465 women died worldwide during pregnancy, childbirth or within 42 days after childbirth. Near-miss is recognized as the predictor of the level of care and maternal death. The objective of the study was to evaluate the associated risk factors of near-miss obstetric cases and maternal death. Material and Methods A Prospective Observational Study was done from August 1, 2014, to June 30, 2015, in Department of Obstetrics and Gynecology at BPKIHS hospital, tertiary care hospital in Eastern Nepal, Dharan. Case eligible by the 5-factor scoring system and WHO near miss criteria were evaluated. Risk factors included severe hemorrhage, hypertensive disorders, and a complication of abortion, ruptured uterus, medical/surgical condition and sepsis. Results: A total of 9,727 delivery were attended during the study period from August 2014 to June 2014. There were 6307 (71.5%) vaginal delivery and 2777(28.5%) caesarean section and 181 perinatal death with a total of 9,546 live birth. A total of 162 near miss was identified, and 16 maternal death occurred during the study. Maternal near miss rate of 16.6 per 1000 live birth, Women with life-threatening conditions (WLTC) of 172, Severe maternal outcome ratio of 18.64 per 1000 live birth, Maternal near-miss mortality ratio (MNM: 1 MD) 10.1:1, Mortality index (MI) of 8.98%. Risk factors were obstetric hemorrhage 27.8%, abortion/ectopic 27.2%, eclampsia 16%, medical/surgical condition 14.8%, sepsis 13.6%, severe preeclamsia 11.1%, ruptured uterus 3.1%, and molar pregnancy 1.9%. 19.75% were prim gravidae, with mean age 25.66 yrs, and cardiovascular and coagulation dysfunction as a major life threatening condition and sepsis (25%) was the major cause of mortality. Conclusion: Hemorrhage and hypertensive disorders are the leading causes of near miss event and sepsis as a leading cause of mortality. As near miss analysis indicates the quality of health care, it is worth presenting in national indices.Keywords: abortion, eclampsia, hemorrhage, maternal mortility, near miss
Procedia PDF Downloads 1962036 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 1652035 The Design and Implementation of an Enhanced 2D Mesh Switch
Authors: Manel Langar, Riad Bourguiba, Jaouhar Mouine
Abstract:
In this paper, we propose the design and implementation of an enhanced wormhole virtual channel on chip router. It is a heart of a mesh NoC using the XY deterministic routing algorithm. It is characterized by its simple virtual channel allocation strategy which allows reducing area and complexity of connections without affecting the performance. We implemented our router on a Tezzaron process to validate its performances. This router is a basic element that will be used later to design a 3D mesh NoC.Keywords: NoC, mesh, router, 3D NoC
Procedia PDF Downloads 5692034 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine
Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski
Abstract:
Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: electric vehicle, power generator, range extender, Wankel engine
Procedia PDF Downloads 1572033 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1422032 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 3412031 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7302030 Chronic wrist pain among handstand practitioners. A questionnaire study.
Authors: Martonovich Noa, Maman David, Alfandari Liad, Behrbalk Eyal.
Abstract:
Introduction: The human body is designed for upright standing and walking, with the lower extremities and axial skeleton supporting weight-bearing. Constant weight-bearing on joints not meant for this action can lead to various pathologies, as seen in wheelchair users. Handstand practitioners use their wrists as weight-bearing joints during activities, but little is known about wrist injuries in this population. This study aims to investigate the epidemiology of wrist pain among handstand practitioners, as no such data currently exist. Methods: The study is a cross-sectional online survey conducted among athletes who regularly practice handstands. Participants were asked to complete a three-part questionnaire regarding their workout regimen, training habits, and history of wrist pain. The inclusion criteria were athletes over 18 years old who practice handstands more than twice a month for at least 4 months. All data were collected using Google Forms, organized and anonymized using Microsoft Excel, and analyzed using IBM SPSS 26.0. Descriptive statistics were calculated, and potential risk factors were tested using asymptotic t-tests and Fisher's tests. Differences were considered significant when p < 0.05. Results: This study surveyed 402 athletes who regularly practice handstands to investigate the prevalence of chronic wrist pain and potential risk factors. The participants had a mean age of 31.3 years, with most being male and having an average of 5 years of training experience. 56% of participants reported chronic wrist pain, and 14.4% reported a history of distal radial fracture. Yoga was the most practiced form, followed by Capoeira. No significant differences were found in demographic data between participants with and without chronic wrist pain, and no significant associations were found between chronic wrist pain prevalence and warm-up routines or protective aids. Conclusion: The lower half of the body is meant to handle weight-bearing and impact, while transferring the load to upper extremities can lead to various pathologies. Athletes who perform handstands are particularly prone to chronic wrist pain, which affects over half of them. Warm-up sessions and protective instruments like wrist braces do not seem to prevent chronic wrist pain, and there are no significant differences in age or training volume between athletes with and without the condition. Further research is needed to understand the causes of chronic wrist pain in athletes, given the growing popularity of sports and activities that can cause this type of injury.Keywords: handstand, handbalance, wrist pain, hand and wrist surgery, yoga, calisthenics, circus, capoeira, movement.
Procedia PDF Downloads 932029 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid
Authors: Min Wang, Sergey Utev
Abstract:
The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial
Procedia PDF Downloads 1412028 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 892027 Probabilistic Graphical Model for the Web
Authors: M. Nekri, A. Khelladi
Abstract:
The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.Keywords: clustering coefficient, preferential attachment, small world, web community
Procedia PDF Downloads 2722026 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 1432025 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 1302024 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma
Authors: Chang Liang, Weizhi Gong, Yan Zhang
Abstract:
Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination
Procedia PDF Downloads 1472023 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases
Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa
Abstract:
Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse
Procedia PDF Downloads 2322022 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 822021 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks
Procedia PDF Downloads 1062020 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis
Authors: Jui-Teng Liao
Abstract:
The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format
Procedia PDF Downloads 912019 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1892018 Tests for Zero Inflation in Count Data with Measurement Error in Covariates
Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao
Abstract:
In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.Keywords: count data, measurement error, score test, zero inflation
Procedia PDF Downloads 289