Search results for: upper bound analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28120

Search results for: upper bound analysis

27970 Impact of Drought on Agriculture in the Upper Middle Gangetic Plain in India

Authors: Reshmita Nath

Abstract:

In this study, we investigate the spatiotemporal characteristics of drought in India and its impact on agriculture during the summer season (April to September). For our analysis, we have used Standardized Precipitation Evapotranspiration Index (SPEI) datasets between 1982 and 2012 at six-month timescale. Based on the criteria SPEI<-1 we obtain the vulnerability map and have found that the Humid subtropical Upper Middle Gangetic Plain (UMGP) region is highly drought prone with an occurrence frequency of 40-45%. This UMGP region contributes at least 18-20% of India’s annual cereal production. Not only the probability, but the region becomes more and more drought-prone in the recent decades. Moreover, the cereal production in the UMGP has experienced a gradual declining trend from 2000 onwards and this feature is consistent with the increase in drought affected areas from 20-25% to 50-60%, before and after 2000, respectively. The higher correlation coefficient (-0.69) between the changes in cereal production and drought affected areas confirms that at least 50% of the agricultural (cereal) losses is associated with drought. While analyzing the individual impact of precipitation and surface temperature anomalies on SPEI (6), we have found that in the UMGP region surface temperature plays the primary role in lowering of SPEI. The linkage is further confirmed by the correlation analysis between the SPEI (6) and surface temperature rise, which exhibits strong negative values in the UMGP region. Higher temperature might have caused more evaporation and drying, which therefore increases the area affected by drought in the recent decade.

Keywords: drought, agriculture, SPEI, Indo-Gangetic plain

Procedia PDF Downloads 241
27969 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time

Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou

Abstract:

The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.

Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.

Procedia PDF Downloads 148
27968 Long-Term Variabilities and Tendencies in the Zonally Averaged TIMED-SABER Ozone and Temperature in the Middle Atmosphere over 10°N-15°N

Authors: Oindrila Nath, S. Sridharan

Abstract:

Long-term (2002-2012) temperature and ozone measurements by Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite zonally averaged over 10°N-15°N are used to study their long-term changes and their responses to solar cycle, quasi-biennial oscillation and El Nino Southern Oscillation. The region is selected to provide more accurate long-term trends and variabilities, which were not possible earlier with lidar measurements over Gadanki (13.5°N, 79.2°E), which are limited to cloud-free nights, whereas continuous data sets of SABER temperature and ozone are available. Regression analysis of temperature shows a cooling trend of 0.5K/decade in the stratosphere and that of 3K/decade in the mesosphere. Ozone shows a statistically significant decreasing trend of 1.3 ppmv per decade in the mesosphere although there is a small positive trend in stratosphere at 25 km. Other than this no significant ozone trend is observed in stratosphere. Negative ozone-QBO response (0.02ppmv/QBO), positive ozone-solar cycle (0.91ppmv/100SFU) and negative response to ENSO (0.51ppmv/SOI) have been found more in mesosphere whereas positive ozone response to ENSO (0.23ppmv/SOI) is pronounced in stratosphere (20-30 km). The temperature response to solar cycle is more positive (3.74K/100SFU) in the upper mesosphere and its response to ENSO is negative around 80 km and positive around 90-100 km and its response to QBO is insignificant at most of the heights. Composite monthly mean of ozone volume mixing ratio shows maximum values during pre-monsoon and post-monsoon season in middle stratosphere (25-30 km) and in upper mesosphere (85-95 km) around 10 ppmv. Composite monthly mean of temperature shows semi-annual variation with large values (~250-260 K) in equinox months and less values in solstice months in upper stratosphere and lower mesosphere (40-55 km) whereas the SAO becomes weaker above 55 km. The semi-annual variation again appears at 80-90 km, with large values in spring equinox and winter months. In the upper mesosphere (90-100 km), less temperature (~170-190 K) prevails in all the months except during September, when the temperature is slightly more. The height profiles of amplitudes of semi-annual and annual oscillations in ozone show maximum values of 6 ppmv and 2.5 ppmv respectively in upper mesosphere (80-100 km), whereas SAO and AO in temperature show maximum values of 5.8 K and 4.6 K in lower and middle mesosphere around 60-85 km. The phase profiles of both SAO and AO show downward progressions. These results are being compared with long-term lidar temperature measurements over Gadanki (13.5°N, 79.2°E) and the results obtained will be presented during the meeting.

Keywords: trends, QBO, solar cycle, ENSO, ozone, temperature

Procedia PDF Downloads 393
27967 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 224
27966 Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin

Authors: Mohamed A. Saleem

Abstract:

Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period.

Keywords: Sirt Basin, Zallah Trough, igneous intrusions, seismic data

Procedia PDF Downloads 92
27965 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate, RPE

Procedia PDF Downloads 219
27964 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 88
27963 Nanotechnology-Based Treatment of Liver Cancer

Authors: Lucian Mocan

Abstract:

We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

Keywords: HepG2 cells, gold nanoparticles, nanoparticle functionalization, laser irradiation

Procedia PDF Downloads 352
27962 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model

Authors: Gürkan Şakar, Fevzi Çakmak Bolat

Abstract:

In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.

Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model

Procedia PDF Downloads 401
27961 The Analysis of Movement Pattern during Reach and Grasp in Stroke Patients: A Kinematic Approach

Authors: Hyo Seon Choi, Ju Sun Kim, DY Kim

Abstract:

Introduction: This study was aimed to evaluate temporo-spatial patterns during the reach and grasp task in hemiplegic stroke patients and to identify movement pattern according to severity of motor impairment. Method: 29 subacute post-stroke patients were enrolled in this study. The temporo-spatial and kinematic data were obtained during reach and grasp task through 3D motion analysis (VICON). The reach and grasp task was composed of four sub-tasks: reach (T1), transport to mouth (T2), transport back to table (T3) and return (T4). The movement time, joint angle and sum of deviation angles from normative data were compared between affected side and unaffected side. They were also compared between two groups (mild to moderate group: 28~66, severe group: 0~27) divided by upper-Fugl-Meyer Assessment (FMA) scale. Result: In affected side, total time and durations of all four tasks were significantly longer than those in unaffected side (p < 0.001). The affected side demonstrated significant larger shoulder abduction, shoulder internal rotation, wrist flexion, wrist pronation, thoracic external rotation and smaller shoulder flexion during reach and grasp task (p < 0.05). The significant differences between mild to moderate group and severe group were observed in total duration, durations of T1, T2, and T3 in reach and grasp task (p < 0.01). The severe group showed significant larger shoulder internal rotation during T2 (p < 0.05) and wrist flexion during T2, T3 (p < 0.05) than mild to moderate group. In range of motion during each task, shoulder abduction-adduction during T2 and T3, shoulder internal-external rotation during T2, elbow flexion-extension during T1 showed significant difference between two groups (p < 0.05). The severe group had significant larger total deviation angles in shoulder internal-external rotation and wrist extension-flexion during reach and grasp task (p < 0.05). Conclusion: This study suggests that post-stroke hemiplegic patients have an unique temporo-spatial and kinematic patterns during reach and grasp task, and the movement pattern may be related to affected upper limb severity. These results may be useful to interpret the motion of upper extremity in stroke patients.

Keywords: Fugl-Meyer Assessment (FMA), motion analysis, reach and grasp, stroke

Procedia PDF Downloads 216
27960 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students

Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle

Abstract:

The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.

Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education

Procedia PDF Downloads 73
27959 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 98
27958 Extra-Pulmonary Mycoplasma Pneumoniae Infection in a Healthy 25-Year-Old Female: A Case Report

Authors: Minna Chang

Abstract:

Introduction: M. pneumoniae is a respiratory pathogen, which commonly causes upper and lower respiratory infections. It primarily affects children and young adults. Respiratory symptoms are well recognized, but extrapulmonary involvement is also common. Other systems that have been implicated in the disease include: skin, mucus membranes, central, peripheral nervous systems, cardiovascular, haematological, renal, and musculoskeletal systems. Here, we report a case of an otherwise healthy, young female with M. pneumonia, who presented with right upper quadrant abdominal pain. Case presentation: a healthy 25-year-old female was referred to A&E by her general practitioner, after presenting with fever, malaise, and right upper quadrant pain. M. pneumoniae was confirmed retrospectively by serology. The patient made a full recovery after a six-day course of doxycycline 100mg. Conclusion: M. pneumonia is a well-established cause of respiratory infections in children and young adults. Febrile illness with multisystem involvement, even in the absence of respiratory symptoms, should raise suspicion of M. pneumoniae infection in healthy, young adults. Our case illustrates the multi-system involvement of M. pneumoniae, which was initially missed, due to paucity of respiratory symptoms at presentation.

Keywords: infectious diseases, mycoplasma pneumoniae, respiratory infections, extra-pulmonary manifestations

Procedia PDF Downloads 123
27957 The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future.

Keywords: climate change, climate impact, air quality, air pollution, Thailand

Procedia PDF Downloads 334
27956 Structural Investigation of the GAF Domain Protein BPSL2418 from Burkholderia pseudomallei

Authors: Mona G. Alharbi

Abstract:

A new family of methionine-sulfoxide reductase (Msr) was recently discovered and was named free methionine sulfoxide reductase (fRMsr). This family includes enzymes with a reductase activity toward the free R isomer of a methionine sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which was previously identified as having in some cases a cyclic nucleotide phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed a new function can be added to the GAF domain family. Interestingly the four members identified in the fRMsr family share the GAF domain structure and the presence of three conserved cysteines in the active site with free R methionine sulfoxide substrate specificity. This thesis presents the crystal structures of reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed and purified to enable protein crystallization. The crystallization trials for reduced, Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable crystals of each form were produced. The crystal structures of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, respectively by molecular replacement. The BPSL2418MES crystal belongs to space group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to space group P 1 21 1. All three forms share the GAF domain structure of six antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a (loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers the active site. The structural comparison of the three forms of BPSL2418 indicates that the catalytically important cysteine is CYS109, where the resolving cysteine is CYS75, which forms a disulfide bond with CYS109. They also suggest that the third conserved cysteine in the active site, CYS85, which is located in α3, is a non-essential cysteine for the catalytic function but it may play a role in the binding of the substrate. The structural comparison of the three forms reveals that conformational changes appear in the active site particularly involving loop4 and CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free Met-R-SO reductase and shares the catalytic mechanism of fRMsr family.

Keywords: Burkholderia pseudomallei, GAF domain protein, methionine sulfoxide reductase, protein crystallization

Procedia PDF Downloads 368
27955 “Double Layer” Theory of Hydrogenation

Authors: Vaclav Heral

Abstract:

Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings.

Keywords: acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation

Procedia PDF Downloads 53
27954 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 149
27953 Studying the Effects of Economic and Financial Development as Well as Institutional Quality on Environmental Destruction in the Upper-Middle Income Countries

Authors: Morteza Raei Dehaghi, Seyed Mohammad Mirhashemi

Abstract:

The current study explored the effect of economic development, financial development and institutional quality on environmental destruction in upper-middle income countries during the time period of 1999-2011. The dependent variable is logarithm of carbon dioxide emissions that can be considered as an index for destruction or quality of the environment given to its effects on the environment. Financial development and institutional development variables as well as some control variables were considered. In order to study cross-sectional correlation among the countries under study, Pesaran and Friz test was used. Since the results of both tests show cross-sectional correlation in the countries under study, seemingly unrelated regression method was utilized for model estimation. The results disclosed that Kuznets’ environmental curve hypothesis is confirmed in upper-middle income countries and also, financial development and institutional quality have a significant effect on environmental quality. The results of this study can be considered by policy makers in countries with different income groups to have access to a growth accompanied by improved environmental quality.

Keywords: economic development, environmental destruction, financial development, institutional development, seemingly unrelated regression

Procedia PDF Downloads 329
27952 Teaching and Learning with Picturebooks: Developing Multimodal Literacy with a Community of Primary School Teachers in China

Authors: Fuling Deng

Abstract:

Today’s children are frequently exposed to multimodal texts that adopt diverse modes to communicate myriad meanings within different cultural contexts. To respond to the new textual landscape, scholars have considered new literacy theories which propose picturebooks as important educational resources. Picturebooks are multimodal, with their meaning conveyed through the synchronisation of multiple modes, including linguistic, visual, spatial, and gestural acting as access to multimodal literacy. Picturebooks have been popular reading materials in primary educational settings in China. However, often viewed as “easy” texts directed at the youngest readers, picturebooks remain on the margins of Chinese upper primary classrooms, where they are predominantly used for linguistic tasks, with little value placed on their multimodal affordances. Practices with picturebooks in the upper grades in Chinese primary schools also encounter many challenges associated with the curation of texts for use, designing curriculum, and assessment. To respond to these issues, a qualitative study was conducted with a community of Chinese primary teachers using multi-methods such as interviews, focus groups, and documents. The findings showed the impact of the teachers’ increased awareness of picturebooks' multimodal affordances on their pedagogical decisions in using picturebooks as educational resources in upper primary classrooms.

Keywords: picturebook education, multimodal literacy, teachers' response to contemporary picturebooks, community of practice

Procedia PDF Downloads 117
27951 The Effect of Modified Posterior Shoulder Stretching Exercises on Posterior Shoulder Tightness, Shoulder Pain, and Dysfunction in Patients with Subacromial Impingement

Authors: Ozge Tahran, Sevgi Sevi Yesilyaprak

Abstract:

Objective: The aim of the study was to investigate the effect of the Wilk’s modified two different stretching exercises on posterior shoulder tightness, pain, and dysfunction in patients with subacromial impingement syndrome (SIS). Method: This study was carried out on 67 patients who have more than 15° difference in shoulder internal rotation range of motion between two sides and had been diagnosed as SIS. Before treatment, all patients were randomly assigned into three groups. Standard physiotherapy programme was applied to the Group 3 (n=23), standard physiotherapy program with Wilk’s modified cross-body stretching exercises were applied to Group 1 (n=22), and standard physiotherapy program with Wilk’s modified sleeper stretching exercises were applied to Group 2 (n= 23). All the patients received 20 sessions of physiotherapy during 4 weeks, 5 days in a week by a physiotherapist. The patients continued their exercises at home at the weekends. Pain severity, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality with Constant and Murley Score (CMS) and disability level with The Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) were evaluated before and after physiotherapy programme. Results: Before treatment, demographic and anthropometric characteristics were similar in groups and there was no statistical difference (p > 0.05). It was determined that pain severity decreased, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality, and disability were improved after physiotherapy in both groups (p < 0.05). Group 1 and 2 had better results in terms of reduction of pain severity during activity, increase in shoulder rotation range of motion, posterior shoulder mobility and upper extremity functionality and improvement in upper extremity disability, compared to Group 3 (p < 0.05). Conclusion: Modified posterior shoulder stretching exercises in addition to standard physiotherapy programme is more effective for reduction of pain during activity, to improve shoulder rotation range of motion, posterior shoulder mobility, and upper extremity functionality in patients with SIS compared to standard physiotherapy programme alone.

Keywords: modified posterior shoulder stretching exercises, posterior shoulder tightness, shoulder complex, subacromial impingement syndrome

Procedia PDF Downloads 160
27950 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 336
27949 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System

Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui

Abstract:

Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.

Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system

Procedia PDF Downloads 237
27948 Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)

Authors: Mehaiguene Madjid, Meddi Mohamed

Abstract:

The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example.

Keywords: balance water, management basin, climate change scenario, Upper and Middle Cheliff

Procedia PDF Downloads 293
27947 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 346
27946 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 70
27945 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India

Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari

Abstract:

The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.

Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya

Procedia PDF Downloads 47
27944 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 555
27943 The Effects on Hand Function with Robot-Assisted Rehabilitation for Children with Cerebral Palsy: A Pilot Study

Authors: Fen-Ling Kuo, Hsin-Chieh Lee, Han-Yun Hsiao, Jui-Chi Lin

Abstract:

Background: Children with cerebral palsy (CP) usually suffered from mild to maximum upper limb dysfunction such as having difficulty in reaching and picking up objects, which profoundly affects their participation in activities of daily living (ADLs). Robot-assisted rehabilitation provides intensive physical training in improving sensorimotor function of the hand. Many researchers have extensively studied the effects of robot-assisted therapy (RT) for the paretic upper limb in patients with stroke in recent years. However, few studies have examined the effect of RT on hand function in children with CP. The purpose of this study is to investigate the effectiveness of Gloreha Sinfonia, a robotic device with a dynamic arm support system mainly focus on distal upper-limb training, on improvements of hand function and ADLs in children with CP. Methods: Seven children with moderate CP were recruited in this case series study. RT using Gloreha Sinfonia was performed 2 sessions per week, 60 min per session for 6 consecutive weeks, with 12 times in total. Outcome measures included the Fugl-Meyer Assessment-upper extremity (FMA-UE), the Box and Block Test, the electromyography activity of the extensor digitorum communis muscle (EDC) and brachioradialis (BR), a grip dynamometer for motor evaluation, and the ABILHAND-Kids for measuring manual ability to manage daily activities, were performed at baseline, after 12 sessions (end of treatment) and at the 1-month follow-up. Results: After 6 weeks of robot-assisted treatment of hand function, there were significant increases in FMA-UE shoulder/elbow scores (p=0.002), FMA-UE wrist/hand scores (p=0.002), and FMA-UE total scores (p=0.002). There were also significant improvements in the BR mean value (p = 0.015) and electrical agonist-antagonist muscle ratio (p=0.041) in grasping a 1-inch cube task. These gains were maintained for a month after the end of the intervention. Conclusion: RT using Gloreha Sinfonia for hand function training may contribute toward the improvement of upper extremity function and efficacy in recruiting BR muscle in children with CP. The results were maintained at one month after intervention.

Keywords: activities of daily living, cerebral palsy, hand function, robotic rehabilitation

Procedia PDF Downloads 101
27942 Triassic and Liassic Paleoenvironments during the Central Atlantic Magmatique Province (CAMP) Effusion in the Moroccan Coastal Meseta: The Mohammedia-Benslimane-El Gara-Berrechid Basin

Authors: Rachid Essamoud, Abdelkrim Afenzar, Ahmed Belqadi

Abstract:

During the Early Mesozoic, the northwestern part of the African continent was affected by initial fracturing associated with the early stages of the opening of the Central Atlantic (Atlantic Rift). During this rifting phase, the Moroccan Meseta experienced an extensive tectonic regime. This extension favored the formation of a set of rift-type basins, including the Mohammedia-Benslimane-ElGara-Berrechid basin. Thus, it is essential to know the nature of the deposits in this basin and their evolution over time as well as their relationship with the basaltic effusion of the Central Atlantic Magmatic Province (CAMP). These deposits are subdivided into two large series: The Lower clay-salt series attributed to the Triassic and the Upper clay-salt series attributed to the Liassic. The two series are separated by the Upper Triassic-Lower Liassic basaltic complex. The detailed sedimentological analysis made it possible to characterize four mega-sequences, fifteen types of facies and eight architectural elements and facies associations in the Triassic series. A progressive decrease observed in paleo-slope over time led to the evolution of the paleoenvironment from a proximal system of alluvial fans to a braided fluvial style, then to an anastomosed system. These environments eventually evolved into an alluvial plain associated with a coastal plain where playa lakes, mudflats and lagoons had developed. The pure and massive halitic facies at the top of the series probably indicate an evolution of the depositional environment towards a shallow subtidal environment. The presence of these evaporites indicates a climate that favored their precipitation, in this case, a fairly hot and humid climate. The sedimentological analysis of the supra-basaltic part shows that during the Lower Liassic, the paleopente after basaltic effusion remained weak with distal environments. The faciological analysis revealed the presence of four major sandstone, silty, clayey and evaporitic lithofacies organized in two mega-sequences: the sedimentation of the first rock-salt mega-sequence took place in a brine depression system free, followed by saline mudflats under continental influences. The upper clay mega-sequence displays facies documenting sea level fluctuations from the final transgression of the Tethys or the opening Atlantic. Saliferous sedimentation is therefore favored from the Upper Triassic, but experienced a sudden rupture by the emission of basaltic flows which are interstratified in the azoic salt clays of very shallow seas. This basaltic emission which belongs to the CAMP would come from a fissural volcanism probably carried out through transfer faults located in the NW and SE of the basin. Their emplacement is probably subaquatic to subaerial. From a chronological and paleogeographic point of view, this main volcanism, dated between the Upper Triassic and the Lower Liassic (180-200 MA), is linked to the fragmentation of Pangea and managed by a progressive expansion triggered in the West in close relation with the initial phases of Central Atlantic rifting and seems to coincide with the major mass extinction at the Triassic-Jurassic boundary.

Keywords: Basalt, CAMP, Liassic, sedimentology, Triassic, Morocco

Procedia PDF Downloads 55
27941 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 273