Search results for: type 2 fuzzy system
23199 A Comparison of Income and Fuzzy Index of Multidimensional Poverty in Fourteen Sub-Saharan African Countries
Authors: Joseph Siani
Abstract:
Over the last decades, dissatisfaction with global indicators of economic performance, such as GDP (Gross Domestic Product) per capita, has shifted the attention to what is now referred to as multidimensional poverty. In this framework, poverty goes beyond income to incorporate aspects of well-being not captured by income measures alone. This paper applies the totally fuzzy approach to estimate the fuzzy index of poverty (FIP) in fourteen Sub-Saharan African (SSA) countries using Demographic and Health Survey (DHS) data and explores whether pictures created by the standard headcount ratio at $1.90 a day and the fuzzy index of poverty tell a similar story. The results suggest that there is indeed considerable mismatch between poverty headcount and the fuzzy index of multidimensional poverty, meaning that the majority of the most deprived people (as identified by the fuzzy index of multidimensional poverty) would not be identified by the poverty headcount ratio. Moreover, we find that poverty is distributed differently by colonial heritage (language). In particular, the most deprived countries in SSA are French-speaking.Keywords: fuzzy set approach, multidimensional poverty, poverty headcount, overlap, Sub-Saharan Africa
Procedia PDF Downloads 20723198 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 19123197 Maximum Power Point Tracking Using FLC Tuned with GA
Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli
Abstract:
The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking
Procedia PDF Downloads 37623196 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 44223195 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank
Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang
Abstract:
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control
Procedia PDF Downloads 20623194 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System
Authors: Ali Ates, Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat
Procedia PDF Downloads 35423193 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System
Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana
Abstract:
Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA
Procedia PDF Downloads 55123192 Construction Project Planning Using Fuzzy Critical Path Approach
Authors: Omar M. Aldenali
Abstract:
Planning is one of the most important phases of the management science and network planning, which represents the project activities relationship. Critical path is one of the project management techniques used to plan and control the execution of a project activities. The objective of this paper is to implement a fuzzy logic approach to arrange network planning on construction projects. This method is used to finding out critical path in the fuzzy construction project network. The trapezoidal fuzzy numbers are used to represent the activity construction project times. A numerical example that represents a house construction project is introduced. The critical path method is implemented on the fuzzy construction network activities, and the results showed that this method significantly affects the completion time of the construction projects.Keywords: construction project, critical path, fuzzy network project, planning
Procedia PDF Downloads 14523191 Comparison of Two Fuzzy Skyhook Control Strategies Applied to an Active Suspension
Authors: Reginaldo Cardoso, Magno Enrique Mendoza Meza
Abstract:
This work focuses on simulation and comparison of two control skyhook techniques applied to a quarter-car of the active suspension. The objective is to provide comfort to the driver. The main idea of skyhook control is to imagine a damper connected to an imaginary sky; thus, the feedback is performed with the resultant force between the imaginary and the suspension damper. The first control technique is the Mandani fuzzy skyhook and the second control technique is a Takagi-Sugeno fuzzy skyhook controller, in the both controllers the inputs are the relative velocity between the two masses and the vehicle body velocity, the output of the Mandani fuzzy skyhook is the coefficient of imaginary damper viscous-friction and the Takagi-Sugeno fuzzy skyhook is the force. Finally, we compared the techniques. The Mandani fuzzy skyhook showed a more comfortable response to the driver, followed closely by the Takagi- Sugeno fuzzy skyhook.Keywords: active suspention, Mandani, quarter-car, skyhook, Sugeno
Procedia PDF Downloads 46823190 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 9923189 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant
Authors: John K. Avor, Choong-Koo Chang
Abstract:
The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability
Procedia PDF Downloads 17423188 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor
Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong
Abstract:
Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance
Procedia PDF Downloads 26623187 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 16323186 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System
Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha
Abstract:
A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.Keywords: ANFIS, large-scale, power system, PSS, stability enhancement
Procedia PDF Downloads 30923185 Developing Fire Risk Factors for Existing Small-Scale Hospitals
Authors: C. L. Wu, W. W. Tseng
Abstract:
From the National Health Insurance (NHI) system was introduced in Taiwan in 2000, there have been some problems in transformed small-scale hospitals, such as mobility of patients, shortage of nursing staff, medical pipelines breaking fire compartments and insufficient fire protection systems. Due to shrinking of the funding scale and the aging society, fire safety in small-scale hospitals has recently given cause for concern. The aim of this study is to determine fire risk index for small-scale hospital through a systematic approach The selection of fire safety mitigation methods can be regarded as a multi-attribute decision making process which must be guaranteed by expert groups. First of all, identify and select safety related factors and identify evaluation criteria through literature reviews and experts group. Secondly, application of the Fuzzy Analytic Hierarchy Process method is used to ascertain a weighted value which enables rating of the importance each of the selected factors. Overall, Sprinkler type and Compartmentation are the most crucial indices in mitigating fire, that is to say, structural approach play an important role to decrease losses in fire events.Keywords: Fuzzy Delphi Method, fuzzy analytic hierarchy, process risk assessment, fire events
Procedia PDF Downloads 45123184 A Fuzzy-Logic Approach to Rule-Based Systems for Leadership Style Selection
Authors: Kim Michelle Siegling, Thomas Spengler, Sebastian Herzog
Abstract:
In personnel economics, the choice of a leadership style is about the question of how a supervisor should lead his or her employees in such a way that operational goals are achieved. In this paper, it is assumed that such leadership decisions are made according to the situation. Thus, the optimal or at least a permissible leadership style has to be selected from a set of several possible leadership styles. For this choice, a wide range of models has been developed in the scientific literature, from which the so-called normative decision model will be picked out and focused on. While the original model is based on univocal rules, this paper develops a fuzzy rule system.Keywords: leadership, leadership styles, rule based systems, fuzzy logic
Procedia PDF Downloads 4923183 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 32623182 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler
Authors: Syed Ahzam Tariq, Atharva Modi
Abstract:
This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability
Procedia PDF Downloads 12923181 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation
Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen
Abstract:
Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning
Procedia PDF Downloads 7723180 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 43523179 Psychophysiological Adaptive Automation Based on Fuzzy Controller
Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno
Abstract:
Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation
Procedia PDF Downloads 8323178 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing
Procedia PDF Downloads 51923177 Decision-Making using Fuzzy Linguistic Hypersoft Set Topology
Authors: Muhammad Saqlain, Poom Kumam
Abstract:
Language being an abstract system and creative act, is quite complicated as its meaning varies depending on the context. The context is determined by the empirical knowledge of a person, which is derived from observation and experience. About further subdivided attributes, the decision-making challenges may entail quantitative and qualitative factors. However, because there is no norm for putting a numerical value on language, existing approaches cannot carry out the operations of linguistic knowledge. The assigning of mathematical values (fuzzy, intuitionistic, and neutrosophic) to any decision-making problem; without considering any rule of linguistic knowledge is ambiguous and inaccurate. Thus, this paper aims to provide a generic model for these issues. This paper provides the linguistic set structure of the fuzzy hypersoft set (FLHSS) to solve decision-making issues. We have proposed the definition some basic operations like AND, NOT, OR, AND, compliment, negation, etc., along with Topology and examples, and properties. Secondly, the operational laws for the fuzzy linguistic hypersoft set have been proposed to deal with the decision-making issues. Implementing proposed aggregate operators and operational laws can be used to convert linguistic quantifiers into numerical values. This will increase the accuracy and precision of the fuzzy hypersoft set structure to deal with decision-making issues.Keywords: linguistic quantifiers, aggregate operators, multi-criteria decision making (mcdm)., fuzzy topology
Procedia PDF Downloads 9823176 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 8323175 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad
Abstract:
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.Keywords: CSTR, temperature, PID, fuzzy logic
Procedia PDF Downloads 46223174 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 13323173 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness
Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali
Abstract:
In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number
Procedia PDF Downloads 43823172 Ecosystem Model for Environmental Applications
Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru
Abstract:
This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision-making.Keywords: ecosystem model, environmental security, fuzzy logic, sustainability of habitable regions
Procedia PDF Downloads 42423171 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic
Authors: Nousheen Hashmi, Shoab Ahmad Khan
Abstract:
Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions
Procedia PDF Downloads 48123170 An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph
Authors: Karunambigai Mevani Govindasamy, Sathishkumar Ayyappan
Abstract:
In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG.Keywords: fractional edge domination number, intuitionistic fuzzy cycle, intuitionistic fuzzy graph, intuitionistic fuzzy path
Procedia PDF Downloads 179