Search results for: geo-spatial
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 161

Search results for: geo-spatial

11 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India

Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari

Abstract:

The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.

Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya

Procedia PDF Downloads 72
10 Methods for Early Detection of Invasive Plant Species: A Case Study of Hueston Woods State Nature Preserve

Authors: Suzanne Zazycki, Bamidele Osamika, Heather Craska, Kaelyn Conaway, Reena Murphy, Stephanie Spence

Abstract:

Invasive Plant Species (IPS) are an important component of effective preservation and conservation of natural lands management. IPS are non-native plants which can aggressively encroach upon native species and pose a significant threat to the ecology, public health, and social welfare of a community. The presence of IPS in U.S. nature preserves has caused economic costs, which has estimated to exceed $26 billion a year. While different methods have been identified to control IPS, few methods have been recognized for early detection of IPS. This study examined identified methods for early detection of IPS in Hueston Woods State Nature Preserve. Mixed methods research design was adopted in this four-phased study. The first phase entailed data gathering, the phase described the characteristics and qualities of IPS and the importance of early detection (ED). The second phase explored ED methods, Geographic Information Systems (GIS) and Citizen Science were discovered as ED methods for IPS. The third phase of the study involved the creation of hotspot maps to identify likely areas for IPS growth. While the fourth phase involved testing and evaluating mobile applications that can support the efforts of citizen scientists in IPS detection. Literature reviews were conducted on IPS and ED methods, and four regional experts from ODNR and Miami University were interviewed. A questionnaire was used to gather information about ED methods used across the state. The findings revealed that geospatial methods, including Unmanned Aerial Vehicles (UAVs), Multispectral Satellites (MSS), and Normalized Difference Vegetation Index (NDVI), are not feasible for early detection of IPS, as they require GIS expertise, are still an emerging technology, and are not suitable for every habitat for the ED of IPS. Therefore, Other ED methods options were explored, which include predicting areas where IPS will grow, which can be done through monitoring areas that are like the species’ native habitat. Through literature review and interviews, IPS are known to grow in frequently disturbed areas such as along trails, shorelines, and streambanks. The research team called these areas “hotspots” and created maps of these hotspots specifically for HW NP to support and narrow the efforts of citizen scientists and staff in the ED of IPS. The results further showed that utilizing citizen scientists in the ED of IPS is feasible, especially through single day events or passive monitoring challenges. The study concluded that the creation of hotspot maps to direct the efforts of citizen scientists are effective for the early detection of IPS. Several recommendations were made, among which is the creation of hotspot maps to narrow the ED efforts as citizen scientists continues to work in the preserves and utilize citizen science volunteers to identify and record emerging IPS.

Keywords: early detection, hueston woods state nature preserve, invasive plant species, hotspots

Procedia PDF Downloads 103
9 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 330
8 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 8
7 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains

Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy

Abstract:

Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.

Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover

Procedia PDF Downloads 215
6 Reducing Flood Risk in a Megacity: Using Mobile Application and Value Capture for Flood Risk Prevention and Risk Reduction Financing

Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama

Abstract:

The megacity of Abidjan is a coastal urban area where the number of floods reported and the associated impacts are on a rapid increase due to climate change, an uncontrolled urbanization, a rapid population increase, a lack of flood disaster mitigation and citizens’ awareness. The objective of this research is to reduce in the short and long term period, the human and socio-economic impact of the flood. Hydrological simulation is applied on free of charge global spatial data (digital elevation model, satellite-based rainfall estimate, landuse) to identify the flood-prone area and to map the risk of flood. A direct interview to a sample residents is used to validate the simulation results. Then a mobile application (Flood Locator) is prototyped to disseminate the risk information to the citizen. In addition, a value capture strategy is proposed to mobilize financial resource for disaster risk reduction (DRRf) to reduce the impact of the flood. The town of Cocody in Abidjan is selected as a case study area to implement this research. The mapping of the flood risk reveals that population living in the study area is highly vulnerable. For a 5-year flood, more than 60% of the floodplain is affected by a water depth of at least 0.5 meters; and more than 1000 ha with at least 5000 buildings are directly exposed. The risk becomes higher for a 50 and 100-year floods. Also, the interview reveals that the majority of the citizen are not aware of the risk and severity of flooding in their community. This shortage of information is overcome by the Flood Locator and by an urban flood database we prototype for accumulate flood data. Flood Locator App allows the users to view floodplain and depth on a digital map; the user can activate the GPS sensor of the mobile to visualize his location on the map. Some more important additional features allow the citizen user to capture flood events and damage information that they can send remotely to the database. Also, the disclosure of the risk information could result to a decrement (-14%) of the value of properties locate inside floodplain and an increment (+19%) of the value of property in the suburb area. The tax increment due to the higher tax increment in the safer area should be captured to constitute the DRRf. The fund should be allocated to the reduction of flood risk for the benefit of people living in flood-prone areas. The flood prevention system discusses in this research will minimize in the short and long term the direct damages in the risky area due to effective awareness of citizen and the availability of DRRf. It will also contribute to the growth of the urban area in the safer zone and reduce human settlement in the risky area in the long term. Data accumulated in the urban flood database through the warning app will contribute to regenerate Abidjan towards the more resilient city by means of risk avoidable landuse in the master plan.

Keywords: abidjan, database, flood, geospatial techniques, risk communication, smartphone, value capture

Procedia PDF Downloads 290
5 Philippine Site Suitability Analysis for Biomass, Hydro, Solar, and Wind Renewable Energy Development Using Geographic Information System Tools

Authors: Jara Kaye S. Villanueva, M. Rosario Concepcion O. Ang

Abstract:

For the past few years, Philippines has depended most of its energy source on oil, coal, and fossil fuel. According to the Department of Energy (DOE), the dominance of coal in the energy mix will continue until the year 2020. The expanding energy needs in the country have led to increasing efforts to promote and develop renewable energy. This research is a part of the government initiative in preparation for renewable energy development and expansion in the country. The Philippine Renewable Energy Resource Mapping from Light Detection and Ranging (LiDAR) Surveys is a three-year government project which aims to assess and quantify the renewable energy potential of the country and to put them into usable maps. This study focuses on the site suitability analysis of the four renewable energy sources – biomass (coconut, corn, rice, and sugarcane), hydro, solar, and wind energy. The site assessment is a key component in determining and assessing the most suitable locations for the construction of renewable energy power plants. This method maximizes the use of both the technical methods in resource assessment, as well as taking into account the environmental, social, and accessibility aspect in identifying potential sites by utilizing and integrating two different methods: the Multi-Criteria Decision Analysis (MCDA) method and Geographic Information System (GIS) tools. For the MCDA, Analytical Hierarchy Processing (AHP) is employed to determine the parameters needed for the suitability analysis. To structure these site suitability parameters, various experts from different fields were consulted – scientists, policy makers, environmentalists, and industrialists. The need to have a well-represented group of people to consult with is relevant to avoid bias in the output parameter of hierarchy levels and weight matrices. AHP pairwise matrix computation is utilized to derive weights per level out of the expert’s gathered feedback. Whereas from the threshold values derived from related literature, international studies, and government laws, the output values were then consulted with energy specialists from the DOE. Geospatial analysis using GIS tools translate this decision support outputs into visual maps. Particularly, this study uses Euclidean distance to compute for the distance values of each parameter, Fuzzy Membership algorithm which normalizes the output from the Euclidean Distance, and the Weighted Overlay tool for the aggregation of the layers. Using the Natural Breaks algorithm, the suitability ratings of each of the map are classified into 5 discrete categories of suitability index: (1) not suitable (2) least suitable, (3) suitable, (4) moderately suitable, and (5) highly suitable. In this method, the classes are grouped based on the best groups similar values wherein each subdivision are set from the rest based on the big difference in boundary values. Results show that in the entire Philippine area of responsibility, biomass has the highest suitability rating with rice as the most suitable at 75.76% suitability percentage, whereas wind has the least suitability percentage with score 10.28%. Solar and Hydro fall in the middle of the two, with suitability values 28.77% and 21.27%.

Keywords: site suitability, biomass energy, hydro energy, solar energy, wind energy, GIS

Procedia PDF Downloads 149
4 A Geospatial Approach to Coastal Vulnerability Using Satellite Imagery and Coastal Vulnerability Index: A Case Study Mauritius

Authors: Manta Nowbuth, Marie Anais Kimberley Therese

Abstract:

The vulnerability of coastal areas to storm surges stands as a critical global concern. The increasing frequency and intensity of extreme weather events have increased the risks faced by communities living along the coastlines Worldwide. Small Island developing states (SIDS) stands out as being exceptionally vulnerable, coastal regions, ecosystems of human habitation and natural forces, bear witness to the frontlines of climate-induced challenges, and the intensification of storm surges underscores the urgent need for a comprehensive understanding of coastal vulnerability. With limited landmass, low-lying terrains, and resilience on coastal resources, SIDS face an amplified vulnerability to the consequences of storm surges, the delicate balance between human activities and environmental dynamics in these island nations increases the urgency of tailored strategies for assessing and mitigating coastal vulnerability. This research uses an approach to evaluate the vulnerability of coastal communities in Mauritius. The Satellite imagery analysis makes use of sentinel satellite imageries, modified normalised difference water index, classification techniques and the DSAS add on to quantify the extent of shoreline erosion or accumulation, providing a spatial perspective on coastal vulnerability. The coastal Vulnerability Index (CVI) is applied by Gonitz et al Formula, this index considers factors such as coastal slope, sea level rise, mean significant wave height, and tidal range. Weighted assessments identify regions with varying levels of vulnerability, ranging from low to high. The study was carried out in a Village Located in the south of Mauritius, namely Rivière des Galets, with a population of about 500 people over an area of 60,000m². The Village of Rivière des Galets being located in the south, and the southern coast of Mauritius being exposed to the open Indian ocean, is vulnerable to swells, The swells generated by the South east trade winds can lead to large waves and rough sea conditions along the Southern Coastline which has an impact on the coastal activities, including fishing, tourism and coastal Infrastructures, hence, On the one hand, the results highlighted that from a stretch of 123km of coastline the linear rate regression for the 5 –year span varies from-24.1m/yr. to 8.2m/yr., the maximum rate of change in terms of eroded land is -24m/yr. and the maximum rate of accretion is 8.2m/yr. On the other hand, the coastal vulnerability index varies from 9.1 to 45.6 and it was categorised into low, moderate, high and very high risks zones. It has been observed that region which lacks protective barriers and are made of sandy beaches are categorised as high risks zone and hence it is imperative to high risk regions for immediate attention and intervention, as they will most likely be exposed to coastal hazards and impacts from climate change, which demands proactive measures for enhanced resilience and sustainable adaptation strategies.

Keywords: climate change, coastal vulnerability, disaster management, remote sensing, satellite imagery, storm surge

Procedia PDF Downloads 8
3 Spatial Assessment of Creek Habitats of Marine Fish Stock in Sindh Province

Authors: Syed Jamil H. Kazmi, Faiza Sarwar

Abstract:

The Indus delta of Sindh Province forms the largest creeks zone of Pakistan. The Sindh coast starts from the mouth of Hab River and terminates at Sir Creek area. In this paper, we have considered the major creeks from the site of Bin Qasim Port in Karachi to Jetty of Keti Bunder in Thatta District. A general decline in the mangrove forest has been observed that within a span of last 25 years. The unprecedented human interventions damage the creeks habitat badly which includes haphazard urban development, industrial and sewage disposal, illegal cutting of mangroves forest, reduced and inconsistent fresh water flow mainly from Jhang and Indus rivers. These activities not only harm the creeks habitat but affected the fish stock substantially. Fishing is the main livelihood of coastal people but with the above-mentioned threats, it is also under enormous pressure by fish catches resulted in unchecked overutilization of the fish resources. This pressure is almost unbearable when it joins with deleterious fishing methods, uncontrolled fleet size, increase trash and by-catch of juvenile and illegal mesh size. Along with these anthropogenic interventions study area is under the red zone of tropical cyclones and active seismicity causing floods, sea intrusion, damage mangroves forests and devastation of fish stock. In order to sustain the natural resources of the Indus Creeks, this study was initiated with the support of FAO, WWF and NIO, the main purpose was to develop a Geo-Spatial dataset for fish stock assessment. The study has been spread over a year (2013-14) on monthly basis which mainly includes detailed fish stock survey, water analysis and few other environmental analyses. Environmental analysis also includes the habitat classification of study area which has done through remote sensing techniques for 22 years’ time series (1992-2014). Furthermore, out of 252 species collected, fifteen species from estuarine and marine groups were short-listed to measure the weight, health and growth of fish species at each creek under GIS data through SPSS system. Furthermore, habitat suitability analysis has been conducted by assessing the surface topographic and aspect derivation through different GIS techniques. The output variables then overlaid in GIS system to measure the creeks productivity. Which provided the results in terms of subsequent classes: extremely productive, highly productive, productive, moderately productive and less productive. This study has revealed the Geospatial tools utilization along with the evaluation of the fisheries resources and creeks habitat risk zone mapping. It has also been identified that the geo-spatial technologies are highly beneficial to identify the areas of high environmental risk in Sindh Creeks. This has been clearly discovered from this study that creeks with high rugosity are more productive than the creeks with low levels of rugosity. The study area has the immense potential to boost the economy of Pakistan in terms of fish export, if geo-spatial techniques are implemented instead of conventional techniques.

Keywords: fish stock, geo-spatial, productivity analysis, risk

Procedia PDF Downloads 245
2 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 235
1 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 101