Search results for: generalized estimating equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3089

Search results for: generalized estimating equations

1349 Introducing New and Less Known Sources of Geomorphosites for Geotourism Development, with Examples from Misho-dagh Mountain in Northwestern Iran

Authors: Davoud Mokhtari

Abstract:

One of the factors behind the increasing development of geotourism is the identification and introduction of new facets of amazing geosphere phenomena. The Misho-Dagh Mountains in northwestern Iran are one of the rich geodiversity areas. The presence of some rare and interesting phenomena in this mountain has increased the potential of this region for geotourism development. Active pressure ridges, arcuate valleys, sag Ponds, granite complexes, glacial rock springs, and displaced habitats due to tectonic activity are among the most significant phenomena in the study area. The research is based on the literature review of geotourism and personal research experiences on geomorphosites of the northwest of Iran. Monitoring the changes of geomorphosites and evaluation of corresponding changes in the geomorphosite̕s location and their capabilities using satellite images and fieldwork is done. In this study, six geomorphosite were introduced, each with special characteristics and with one of the geotourism topics. Selection of this location of northwestern Iran is due to the focus of author of this paper is on this part of the country, and there is no doubt that such places, even with higher values of geotourism, there are in various parts of Iran and the world that could be interested in this field of emerging science. From in situ observations taken in the field and estimating a level of impact, employing assessment techniques, and then finally extrapolating the resultant factors across all case studies, we have been able to generate a geotourism map for future planning purposes. Accordingly, it should be noted that we are not just part of the landscape of the geomorphosites. The geomorphosites are also part of our landscape. It is hoped that the findings of this paper can open a new world of geotourism that, if is not associated with geomorphological processes, will be very short.

Keywords: geotourism, sources of geotourism, geotouristic areas, mishow_dagh, northwest of Iran

Procedia PDF Downloads 91
1348 Secured Power flow Algorithm Including Economic Dispatch with GSDF Matrix Using LabVIEW

Authors: Slimane Souag, Amel Graa, Farid Benhamida

Abstract:

In this paper we present a new method for solving the secured power flow problem by the economic dispatch using DC power flow method and Generation Shift Distribution Factor (GSDF), in this work we create a graphical interface in LabVIEW as a virtual instrument. Hence the dc power flow reduces the power flow problem to a set of linear equations, which make the iterative calculation very fast and the GSFD matrix present the effects of single and multiple generator MW change on the transmission line. The effectiveness of the method developed is identified through its application to an IEEE-14 bus test system. The calculation results show excellent performance of the proposed method, in regard to computation time and quality of results.

Keywords: electrical power system security, economic dispatch, sensitivity matrix, labview

Procedia PDF Downloads 488
1347 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 144
1346 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, decoupled model, load flow, control parameters

Procedia PDF Downloads 550
1345 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra

Abstract:

This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics

Procedia PDF Downloads 506
1344 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis

Authors: Kawsar Ahmed, Hong Wang

Abstract:

The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.

Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation

Procedia PDF Downloads 111
1343 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 366
1342 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 178
1341 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu

Abstract:

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis

Procedia PDF Downloads 204
1340 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand

Authors: Chukiat Chaiboonsri, Satawat Wannapan

Abstract:

This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.

Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information

Procedia PDF Downloads 293
1339 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 82
1338 Fiber Orientation Measurements in Reinforced Thermoplastics

Authors: Ihsane Modhaffar

Abstract:

Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 530
1337 Nanofluids and Hybrid Nanofluids: Comparative Study of Mixed Convection in a Round Bottom Flask

Authors: Hicham Salhi

Abstract:

This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results. This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results.

Keywords: bottom flask, mixed convection, hybrid nanofluids, numerical simulation

Procedia PDF Downloads 85
1336 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 200
1335 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 293
1334 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 139
1333 Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock

Authors: Mohammadmehdi Torfehnejada, Serhan Senso

Abstract:

Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations.

Keywords: aftershock collapse capacity, special steel moment frames, mainshock-aftershock sequences, incremental dynamic analysis, mainshock damage

Procedia PDF Downloads 151
1332 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet

Authors: K. Boualem, T. Yahiaoui, A. Azzi

Abstract:

Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.

Keywords: active control, synthetic jet, NACA airfoil, CFD

Procedia PDF Downloads 311
1331 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 126
1330 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman

Authors: Mahmoud Mohamed Emam

Abstract:

In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.

Keywords: learning disabilities, phonemic awareness, third graders, Oman

Procedia PDF Downloads 638
1329 Lennox-gastaut Syndrome Associated with Dysgenesis of Corpus Callosum

Authors: A. Bruce Janati, Muhammad Umair Khan, Naif Alghassab, Ibrahim Alzeir, Assem Mahmoud, M. Sammour

Abstract:

Rationale: Lennox-Gastaut syndrome(LGS) is an electro-clinical syndrome composed of the triad of mental retardation, multiple seizure types, and the characteristic generalized slow spike-wave complexes in the EEG. In this article, we report on two patients with LGS whose brain MRI showed dysgenesis of corpus callosum(CC). We review the literature and stress the role of CC in the genesis of secondary bilateral synchrony(SBS). Method: This was a clinical study conducted at King Khalid Hospital. Results: The EEG was consistent with LGS in patient 1 and unilateral slow spike-wave complexes in patient 2. The MRI showed hypoplasia of the splenium of CC in patient 1, and global hypoplasia of CC combined with Joubert syndrome in patient 2. Conclusion: Based on the data, we proffer the following hypotheses: 1-Hypoplasia of CC interferes with functional integrity of this structure. 2-The genu of CC plays a pivotal role in the genesis of secondary bilateral synchrony. 3-Electrodecremental seizures in LGS emanate from pacemakers generated in the brain stem, in particular the mesencephalon projecting abnormal signals to the cortex via thalamic nuclei. 4-Unilateral slow spike-wave complexes in the context of mental retardation and multiple seizure types may represent a variant of LGS, justifying neuroimaging studies.

Keywords: EEG, Lennox-Gastaut syndrome, corpus callosum , MRI

Procedia PDF Downloads 445
1328 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid

Authors: Zahra Majd, Mohsen Kalantar

Abstract:

Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.

Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix

Procedia PDF Downloads 89
1327 Insecurity, Instability and Lack of Benefits: Factors Reasonable for Poor Performance among “Contract Workers” in South Africa

Authors: Charmaine Devinee Pillay

Abstract:

Employees in both public and private sectors are expected to contribute significantly to the growth and development of the organization that employs them. Good working conditions are directly linked to the optimum output emanating from the workforce’s excellent performance. Insecurity, instability and lack of benefits negatively impact on the employees’ commitment to their job. This is a qualitative case study that comprised 40 “Contract Employees” (Academic and Supporting staff) in the Faculty of Health Sciences, Walter Sisulu University, Mthatha, Eastern Cape, South Africa. Questionnaire, as instrument of data collection, was used to obtain qualitative data. Data collected were categorized in themes and sub-themes for analyses and discussion. Findings showed that “contract Employees” are highly demoralized due to job insecurity and non-benefits, among other factors, which directly affect their overall output in discharging their duties. The case study at Walter Sisulu University typifies the generalized challenges faced by workers on contract basis in South Africa. It is therefore, recommended that employers hire their workforce on permanent basis or, where “Contract Employment “is inevitable, similar conditions that go with permanent employment should be incorporated in the contract terms of “Contract Employees”. This serves as impetus for optimum performance.

Keywords: contract employee, insecurity, instability, risk factors

Procedia PDF Downloads 200
1326 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 194
1325 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 71
1324 Numerical Investigation the Effect of Adjustable Guide Vane for Improving the Airflow Rate in Axial Fans

Authors: Behzad Shahizare, N. Nik-Ghazali, Kannan M. Munisamy, Seyedsaeed Tabatabaeikia

Abstract:

The main objective of this study is to clarify the effect of the adjustable outlet guide vane (OGV) on the axial fan. Three-dimensional Numerical study was performed to analyze the effect of adjustable guide vane for improving the airflow rate in axial fans. Grid independence test was done between five different meshes in order to choose the reliable mesh. In flow analyses, Reynolds averaged Navier-Stokes (RANS) equations was solved using three types of turbulence models named k-ɛ, k-ω and k-ω SST. The aerodynamic performances of the fan and guide vane were evaluated. Numerical method was validated by comparing with experimental test according to AMECA 210 standard. Results showed that, by using the adjustable guide vane the airflow rate is increased around 3% to 6 %. The maximum enhancement of the airflow rate was achieved when pressure was 374pa.

Keywords: axial fan, adjustable guide vane, CFD, turbo machinery

Procedia PDF Downloads 334
1323 Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream

Authors: N. M. Arifin, S. P. M. Isa, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters.

Keywords: forced convection, Casson fluids, moving flat plate, boundary layer

Procedia PDF Downloads 464
1322 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 60
1321 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation

Authors: Olukunle C. Olawole, Dilip Kumar De

Abstract:

We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.

Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density

Procedia PDF Downloads 375
1320 A Platform to Analyze Controllers for Solar Hot Water Systems

Authors: Aziz Ahmad, Guillermo Ramirez-Prado

Abstract:

Governments around the world encourage the use of solar water heating in residential houses due to the low maintenance requirements and efficiency of the solar collector water heating systems. The aim of this work is to study a domestic solar water heating system in a residential building to develop a model of the entire solar water heating system including flat-plate solar collector and storage tank. The proposed model is adaptable to any households and location. The model can be used to test different types of controllers and can provide efficiency as well as economic analysis. The proposed model is based on the heat and mass transfer equations along with assumptions applied in the model which can be modified for a variety of different solar water heating systems and sizes. Simulation results of the model were compared with the actual system which shows similar trends.

Keywords: solar thermal systems, solar water heating, solar collector model, hot water tank model, solar controllers

Procedia PDF Downloads 267