Search results for: ArcGIS data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42046

Search results for: ArcGIS data analysis

40516 Local Culture and Ability to Access Funding on Beef Cattle Farmer

Authors: Aslina Asnawi, A. Amidah Amrawaty, Nirwana

Abstract:

This article examines the relationship of local culture on the ability to access finance on beef cattle farmer. The local culture in this study associated with the values held by the farmer community so far and affect the character of farmers both in his personal life and his relationship with the surrounding environment. The data was collected by using interview and questionnaire instrument. Data were analyzed using descriptive analysis and correlation analysis. The result show that local culture identified in this study include: honesty, cleverness, decency, firmness, hard work, and shame. It’s important result that local culture has been associated with the ability to access financing for beef cattle farmers. The higher values are adopted and maintained by farmers will increase their ability to obtain loans from both informal and formal institutions. Strengthening the local culture is important because it affects the character of farmers who became one of the considerations for lenders other than collateral, capacity and capital is precisely the financing constraints for them.

Keywords: access funding, beef cattle farmers, character, local culture

Procedia PDF Downloads 327
40515 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 368
40514 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 11
40513 Outreach Intervention Addressing Crack Cocaine Addiction in Users with Co-Occurring Opioid Use Disorder

Authors: Louise Penzenstadler, Tiphaine Robet, Radu Iuga, Daniele Zullino

Abstract:

Context: The outpatient clinic of the psychiatric addiction service of Geneva University Hospital has been providing support to individuals affected by various narcotics for 30 years. However, the increasing consumption of crack cocaine in Geneva has presented a new challenge for the healthcare system. Research Aim: The aim of this research is to evaluate the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder. Methodology: The research utilizes a combination of quantitative and qualitative retrospective data analysis to evaluate the effectiveness of the outreach intervention. Findings: The data collected from October 2023 to December 2023 show that the outreach program successfully made 1,071 contacts with drug users and led to 15 new requests for care and enrollment in treatment. Patients expressed high satisfaction with the intervention, citing easy and rapid access to treatment and social support. Theoretical Importance: This research contributes to the understanding of the challenges and specific needs of a complex group of drug users who face severe health problems. It highlights the importance of outreach interventions in establishing trust, connecting users with care, and facilitating medication-assisted treatment for opioid addiction. Data Collection: Data was collected through the outreach program's interactions with drug users, including street outreach interventions and presence at locations frequented by users. Patient satisfaction surveys were also utilized. Analysis Procedures: The collected data was analyzed using both quantitative and qualitative methods. The quantitative analysis involved examining the number of contacts made, new requests for care, and treatment enrollment. The qualitative analysis focused on patient satisfaction and their perceptions of the intervention. Questions Addressed: The research addresses the following questions: What is the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder? How effective is the outreach program in connecting drug users with care and initiating medication-assisted treatment? Conclusion: The outreach program has proven to be an effective intervention in establishing trust with crack users, connecting them with care, and initiating medication-assisted treatment for opioid addiction. It has also highlighted the importance of addressing the specific challenges faced by this group of drug users.

Keywords: crack addiction, outreach treatment, peer intervention, polydrug use

Procedia PDF Downloads 62
40512 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 77
40511 Interoperability Standard for Data Exchange in Educational Documents in Professional and Technological Education: A Comparative Study and Feasibility Analysis for the Brazilian Context

Authors: Giovana Nunes Inocêncio

Abstract:

The professional and technological education (EPT) plays a pivotal role in equipping students for specialized careers, and it is imperative to establish a framework for efficient data exchange among educational institutions. The primary focus of this article is to address the pressing need for document interoperability within the context of EPT. The challenges, motivations, and benefits of implementing interoperability standards for digital educational documents are thoroughly explored. These documents include EPT completion certificates, academic records, and curricula. In conjunction with the prior abstract, it is evident that the intersection of IT governance and interoperability standards holds the key to transforming the landscape of technical education in Brazil. IT governance provides the strategic framework for effective data management, aligning with educational objectives, ensuring compliance, and managing risks. By adopting interoperability standards, the technical education sector in Brazil can facilitate data exchange, enhance data security, and promote international recognition of qualifications. The utilization of the XML (Extensible Markup Language) standard further strengthens the foundation for structured data exchange, fostering efficient communication, standardization of curricula, and enhancing educational materials. The IT governance, interoperability standards, and data management critical role in driving the quality, efficiency, and security of technical education. The adoption of these standards fosters transparency, stakeholder coordination, and regulatory compliance, ultimately empowering the technical education sector to meet the dynamic demands of the 21st century.

Keywords: interoperability, education, standards, governance

Procedia PDF Downloads 70
40510 Barriers to Job Localization Policy in Private Sector: Case Study from Oman

Authors: Yahya Al Nahdi

Abstract:

Even though efforts to increase the participation of nationals in the workforce have been in place for more than a decade in the Sultanate of Oman, the results are not impressive. Citizens’ workforce participation – it is argued in the literature – is hindered by institutional, as well as attitudinal concerns. The purpose of this study was to determine barriers to Omanization (employment of Omani nationals) in the private sector as perceived by the senior managers in government and private sector. Data were collected predominantly through in-depth, semi-structured interviews with managers who directly deal with Omanization policies from both the public and private sector. Results from the data analysis have shown that the majority of participants acknowledged a work preference in the movement (public sector). The private sector employees' compensation and benefits package was perceived to be less attractive than that offered in the government (public sector). The negative perceptions (stereotypes) shared by expatriates regarding work attitudes and competencies of citizens in the local labour market was also overwhelmingly perceived as a major hindrance. Furthermore, institutional issues such as, ineffectiveness of rules and regulation regarding Omanization, inappropriate quota system and lack of public awareness towards private sector’s jobs, are also perceived problematic to successful Omanization. Finally, results from the data analysis were used in recommending strategies for potential consideration in the pursuit of a successful Omanization programme.

Keywords: localization, job security, labour force structure, Omanization, private sector, public sector

Procedia PDF Downloads 396
40509 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 80
40508 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 237
40507 Problems of Boolean Reasoning Based Biclustering Parallelization

Authors: Marcin Michalak

Abstract:

Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.

Keywords: Boolean reasoning, biclustering, parallelization, prime implicant

Procedia PDF Downloads 122
40506 I Post Therefore I Am! Construction of Gendered Identities in Facebook Communication of Pakistani Male and Female Users

Authors: Rauha Salam

Abstract:

In Pakistan, over the past decade, the notion of what counts as a true ‘masculine and feminine’ behaviour has become more complicated with the inspection of social media. Given its strong religious and socio-cultural norms, patriarchal values are entrenched in the local and cultural traditions of the Pakistani society and regulate the social value of gender. However, the increasing use of internet among Pakistani men and women, especially in the form of social media uses by the youth, is increasingly becoming disruptive and challenging to the strict modes of behavioural monitoring and control both at familial and state level. Facebook, being the prime social media communication platform in Pakistan, provide its users a relatively ‘safe’ place to embrace how they want to be perceived by their audience. Moreover, the availability of an array of semiotic resources (e.g. the videos, audios, visuals and gifs) on Facebook makes it possible for the users to create a virtual identity that allows them to describe themselves in detail. By making use of Multimodal Discourse Analysis, I aimed to investigate how men and women in Pakistan construct their gendered identities multimodally (visually and linguistically) through their Facebook posts and how these semiotic modes are interconnected to communicate specific meanings. In case of the female data, the analysis showed an ambivalence as females were found to be conforming to the existing socio-cultural norms of the society and they were also employing social media platforms to deviate from traditional gendered patterns and to voice their opinions simultaneously. Similarly, the male data highlighted the reproduction of the prevalent cultural models of masculinity. However, there were instances in the data that showed a digression from the standard norms and there is a (re)negotiation of the traditional patriarchal representations.

Keywords: Facebook, Gendered Identities, Multimodal Discourse Analysis, Pakistan

Procedia PDF Downloads 116
40505 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 37
40504 The Relationship between Personal, Psycho-Social and Occupational Risk Factors with Low Back Pain Severity in Industrial Workers

Authors: Omid Giahi, Ebrahim Darvishi, Mahdi Akbarzadeh

Abstract:

Introduction: Occupational low back pain (LBP) is one of the most prevalent work-related musculoskeletal disorders in which a lot of risk factors are involved that. The present study focuses on the relation between personal, psycho-social and occupational risk factors and LBP severity in industrial workers. Materials and Methods: This research was a case-control study which was conducted in Kurdistan province. 100 workers (Mean Age ± SD of 39.9 ± 10.45) with LBP were selected as the case group, and 100 workers (Mean Age ± SD of 37.2 ± 8.5) without LBP were assigned into the control group. All participants were selected from various industrial units, and they had similar occupational conditions. The required data including demographic information (BMI, smoking, alcohol, and family history), occupational (posture, mental workload (MWL), force, vibration and repetition), and psychosocial factors (stress, occupational satisfaction and security) of the participants were collected via consultation with occupational medicine specialists, interview, and the related questionnaires and also the NASA-TLX software and REBA worksheet. Chi-square test, logistic regression and structural equation modeling (SEM) were used to analyze the data. For analysis of data, IBM Statistics SPSS 24 and Mplus6 software have been used. Results: 114 (77%) of the individuals were male and 86 were (23%) female. Mean Career length of the Case Group and Control Group were 10.90 ± 5.92, 9.22 ± 4.24, respectively. The statistical analysis of the data revealed that there was a significant correlation between the Posture, Smoking, Stress, Satisfaction, and MWL with occupational LBP. The odds ratios (95% confidence intervals) derived from a logistic regression model were 2.7 (1.27-2.24) and 2.5 (2.26-5.17) and 3.22 (2.47-3.24) for Stress, MWL, and Posture, respectively. Also, the SEM analysis of the personal, psycho-social and occupational factors with LBP revealed that there was a significant correlation. Conclusion: All three broad categories of risk factors simultaneously increase the risk of occupational LBP in the workplace. But, the risks of Posture, Stress, and MWL have a major role in LBP severity. Therefore, prevention strategies for persons in jobs with high risks for LBP are required to decrease the risk of occupational LBP.

Keywords: industrial workers occupational, low back pain, occupational risk factors, psychosocial factors

Procedia PDF Downloads 257
40503 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector

Authors: Saif Ul Haq

Abstract:

The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.

Keywords: construction industry, quality considerations, quality function deployment, safety considerations

Procedia PDF Downloads 122
40502 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 292
40501 Effect of Bonded and Removable Retainers on Occlusal Settling after Orthodontic Treatment: A Systematic Review and Meta-Analysis

Authors: Umair Shoukat Ali, Kamil Zafar, Rashna Hoshang Sukhia, Mubassar Fida, Aqeel Ahmed

Abstract:

Objective: This systematic review and meta-analysis aimed to summarize the effectiveness of bonded and removable retainers (Hawley and Essix retainer) in terms of improvement in occlusal settling (occlusal contact points/areas) after orthodontic treatment. Search Method: We searched the Cochrane Library, CINAHL Plus, PubMed, Web of Science, Orthodontic journals, and Google scholar for eligible studies. We included randomized control trials (RCT) along with Cohort studies. Studies that reported occlusal contacts/areas during retention with fixed bonded and removable retainers were included. To assess the quality of the RCTs Cochrane risk of bias tool was utilized, whereas Newcastle-Ottawa Scale was used for assessing the quality of cohort studies. Data analysis: The data analysis was limited to reporting mean values of occlusal contact points/areas with different retention methods. By utilizing the RevMan software V.5.3, a meta-analysis was performed for all the studies with the quantitative data. For the computation of the summary effect, a random effect model was utilized in case of high heterogeneity. I2 statistics were utilized to assess the heterogeneity among the selected studies. Results: We included 6 articles in our systematic review after scrutinizing 219 articles and eliminating them based on duplication, titles, and objectives. We found significant differences between fixed and removable retainers in terms of occlusal settling within the included studies. Bonded retainer (BR) allowed faster and better posterior tooth settling as compared to Hawley retainer (HR). However, HR showed good occlusal settling in the anterior dental arch. Essix retainer showed a decrease in occlusal contact during the retention phase. Meta-analysis showed no statistically significant difference between BR and removable retainers. Conclusions: HR allowed better overall occlusal settling as compared to other retainers in comparison. However, BR allowed faster settling in the posterior teeth region. Overall, there are insufficient high-quality RCTs to provide additional evidence, and further high-quality RCTs research is needed.

Keywords: orthodontic retainers, occlusal contact, Hawley, fixed, vacuum-formed

Procedia PDF Downloads 121
40500 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 457
40499 The Effect of General Data Protection Regulation on South Asian Data Protection Laws

Authors: Sumedha Ganjoo, Santosh Goswami

Abstract:

The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.

Keywords: data privacy, GDPR, Asia, data protection laws

Procedia PDF Downloads 81
40498 A Content Analysis of Sustainability Reporting to Frame the Heterogeneity in Corporate Environment Sustainability Practices

Authors: Venkataraman Sankaranarayanan, Sougata Ray

Abstract:

While extant research has examined many aspects of differential corporate environmental outcomes and behavior, a holistic and integrated view of heterogeneity in corporate environment sustainability (CES) practices remains a puzzle to be fully unraveled – its extent and nature, its relationship to macro or micro level influences, or strategic orientations. Such a perspective would be meaningful for the field given notable strides in CES practices and the corporate social responsibility agenda over the last two decades, in the backdrop of altered global socio-political sensitivities and technological advances. To partly address this gap, this exploratory research adopted a content analysis approach to code patterns in the sustainability disclosures of the 160 largest global firms spread over 8 years. The sample of firms spanned seven industries, nine countries and three continents thereby presenting data rich and diverse enough in several dimensions to be representative of global heterogeneity in CES practices. Through a factor analysis of the coded data, four strategic CES orientations were extracted through the analysis, that effectively straddles most of the variation observed in current CES practices – one that seeks to reduce environmental damage on account of the firm’s operations, another that prioritizes minimalism, a third that focuses on broader ecological status quo, and a final one that champions the ‘business of green’, extending the CES agenda beyond the firm’s boundaries. These environment sustainability strategy orientations are further examined to elicit prominent patterns and explore plausible antecedents.

Keywords: corporate social responsibility, corporate sustainability, environmental management, heterogeneity, strategic orientation

Procedia PDF Downloads 334
40497 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

Authors: Bahloul Amel

Abstract:

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning

Procedia PDF Downloads 443
40496 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition

Authors: Michael Okeke, Andrew Blyth

Abstract:

Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.

Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)

Procedia PDF Downloads 343
40495 Designing a Cricket Team Selection Method Using Super-Efficient DEA and Semi Variance Approach

Authors: Arnab Adhikari, Adrija Majumdar, Gaurav Gupta, Arnab Bisi

Abstract:

Team formation plays an instrumental role in the sports like cricket. Existing literature reveals that most of the works on player selection focus only on the players’ efficiency and ignore the consistency. It motivates us to design an improved player selection method based on both player’s efficiency and consistency. To measure the players’ efficiency measurement, we employ a modified data envelopment analysis (DEA) technique namely ‘super-efficient DEA model’. We design a modified consistency index based on semi variance approach. Here, we introduce a new parameter called ‘fitness index’ for consistency computation to assess a player’s fitness level. Finally, we devise a single performance score using both efficiency score and consistency score with the help of a linear programming model. To test the robustness of our method, we perform a rigorous numerical analysis to determine the all-time best One Day International (ODI) Cricket XI. Next, we conduct extensive comparative studies regarding efficiency scores, consistency scores, selected team between the existing methods and the proposed method and explain the rationale behind the improvement.

Keywords: decision support systems, sports, super-efficient data envelopment analysis, semi variance approach

Procedia PDF Downloads 397
40494 The Event of Extreme Precipitation Occurred in the Metropolitan Mesoregion of the Capital of Para

Authors: Natasha Correa Vitória Bandeira, Lais Cordeiro Soares, Claudineia Brazil, Luciane Teresa Salvi

Abstract:

The intense rain event that occurred between February 16 and 18, 2018, in the city of Barcarena in Pará, located in the North region of Brazil, demonstrates the importance of analyzing this type of event. The metropolitan mesoregion of Belem was severely punished by rains much above the averages normally expected for that time of year; this phenomenon affected, in addition to the capital, the municipalities of Barcarena, Murucupi and Muruçambá. Resulting in a great flood in the rivers of the region, whose basins were affected with great intensity of precipitation, causing concern for the local population because in this region, there are located companies that accumulate ore tailings, and in this specific case, the dam of any of these companies, leaching the ore to the water bodies of the Murucupi River Basin. This article aims to characterize this phenomenon through a special analysis of the distribution of rainfall, using data from atmospheric soundings, satellite images, radar images and data from the GPCP (Global Precipitation Climatology Project), in addition to rainfall stations located in the study region. The results of the work demonstrated a dissociation between the data measured in the meteorological stations and the other forms of analysis of this extreme event. Monitoring carried out solely on the basis of data from pluviometric stations is not sufficient for monitoring and/or diagnosing extreme weather events, and investment by the competent bodies is important to install a larger network of pluviometric stations sufficient to meet the demand in a given region.

Keywords: extreme precipitation, great flood, GPCP, ore dam

Procedia PDF Downloads 106
40493 Quality Improvement Template for Undergraduate Nursing Education Curriculum Review and Analysis

Authors: Jennifer Stephens, Nichole Parker, Kristin Petrovic

Abstract:

To gain a better understanding of how students enrolled in a Bachelor of Nursing (BN) program are educated, faculty members in the BN program at Athabasca University (AU) in Alberta, Canada, developed a 3-phase comprehensive curriculum review project. Phase one of this review centered around hiring an external curriculum expert to examine and analyze the current curriculum and to propose recommendations focused on identifying gaps as well as building on strengths towards meeting changing health care trends. Phase two incorporated extensive institutional document analysis as well as qualitative and quantitative data collection in reciprocated critical reflection and has yielded insights into valuable processes, challenges, and solutions inherent to the complexities of undertaking curriculum review and analysis. Results of our phase one and two analysis generated a quality improvement (QI) template that could benefit other nursing education programs engaged in curriculum review and analysis. The key processes, lessons, and insights, as well as future project phase three plans, will be presented for iterative discussion and role modelling for other institutions undergoing, or planning, content-based curriculum review and evaluation.

Keywords: curriculum, education, nursing, nursing faculty practice, quality improvement

Procedia PDF Downloads 144
40492 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 811
40491 Advanced Structural Analysis of Energy Storage Materials

Authors: Disha Gupta

Abstract:

The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.

Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD

Procedia PDF Downloads 148
40490 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology

Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy

Abstract:

Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.

Keywords: legacy systems, redocumentation, big data analysis, parallel processing

Procedia PDF Downloads 44
40489 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 262
40488 Armenian Refugees in Early 20th C Japan: Quantitative Analysis on Their Number Based on Japanese Historical Data with the Comparison of a Foreign Historical Data

Authors: Meline Mesropyan

Abstract:

At the beginning of the 20th century, Japan served as a transit point for Armenian refugees fleeing the 1915 Genocide. However, research on Armenian refugees in Japan is sparse, and the Armenian Diaspora has never taken root in Japan. Consequently, Japan has not been considered a relevant research site for studying Armenian refugees. The primary objective of this study is to shed light on the number of Armenian refugees who passed through Japan between 1915 and 1930. Quantitative analyses will be conducted based on newly uncovered Japanese archival documents. Subsequently, the Japanese data will be compared to American immigration data to estimate the potential number of refugees in Japan during that period. This under-researched area is relevant to both the Armenian Diaspora and refugee studies in Japan. By clarifying the number of refugees, this study aims to enhance understanding of Japan's treatment of refugees and the extent of humanitarian efforts conducted by organizations and individuals in Japan, contributing to the broader field of historical refugee studies.

Keywords: Armenian genocide, Armenian refugees, Japanese statistics, number of refugees

Procedia PDF Downloads 55
40487 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 685