Search results for: threshold detecting
73 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 20872 Development and Clinical Application of a Cochlear Implant Mapping Assistance System
Authors: Hong Mengdi, Li Jianan, Ji Fei, Chen Aiting, Wang Qian
Abstract:
Objective: To overcome the communication barriers that audiologists encounter during cochlear implant mapping, particularly the challenge of eliciting subjective feedback from recipients regarding electrical stimulation, and to enhance the capabilities of existing technologies, we teamed up with software engineers to design an interactive approach for patient-audiologist communication. This approach employs a tablet (PAD) as the interface for a communication and feedback system between patients and audiologists during the mapping process, known as the Cochlear Implant Mapping Assistance System. Methods: Capitalizing on the touchscreen functionality of the PAD, the recipients' subjective feedback during cochlear implant mapping is instantly transmitted to the audiologist's mapping computer. The system acts as a platform for auditory assessment instruments, facilitating immediate evaluation of recipients' post-mapping hearing and speech discrimination capabilities. Furthermore, the system is designed to augment the visual reinforcement audiometry (VRA) process. The system consists of six modules, including three testing projects: loudness testing, hearing threshold testing, and loudness balance testing; two assessment projects: warble tone testing and digit speech testing; and one VRA animation project. It also incorporates speech-to-text and text input display functions tailored to accommodate speech communication difficulties in hearing-impaired individuals, with pre-installed common exchange content between audiologists and recipients. Audiologists can input sentences by selecting options. The system supports switching between Chinese and English versions, suitable for audiologists and recipients who use English, facilitating international application of the system. Results: The Cochlear Implant Mapping Assistance System has been in use for over a year in the Auditory Implant Center of the Department of Otology and Neurotology, Medical Center of Otology and Head & Neck Surgery, Chinese PLA General Hospital, with more than 300 recipients using this mapping system. Currently, the system operates stably, with both audiologists and recipients providing positive feedback, indicating a significant improvement over previous methods. It is particularly well-received by pediatric recipients, significantly enhancing the work efficiency of audiologists and improving the feedback efficiency and accuracy of recipients. The system enhances the comprehensibility for cochlear implant recipients, improves wearing comfort and user experience, facilitates cochlear implant auditory mapping, and increases the collection of previously challenging-to-obtain data during the existing assisted mapping process, such as loudness testing data, electrical stimulation testing data, warble tone testing data, loudness balance testing data, digit speech testing data, and visual reinforcement audiometry testing data. Real-time data recording improves the accuracy of assisted mapping. The interface design is meticulously crafted to accommodate patients of varying ages and cognitive abilities, featuring an intuitive design that allows for effortless, guidance-free use by patients.Keywords: audiologist, subjective feedback, mapping, cochlear implant
Procedia PDF Downloads 2071 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 6670 Adaptation of Retrofit Strategies for the Housing Sector in Northern Cyprus
Authors: B. Ozarisoy, E. Ampatzi, G. Z. Lancaster
Abstract:
This research project is undertaken in the Turkish Republic of Northern Cyprus (T.R.N.C). The study focuses on identifying refurbishment activities capable of diagnosing and detecting the underlying problems alongside the challenges offered by the buildings’ typology in addition to identifying the correct construction materials in the refurbishment process which allow for the maximisation of expected energy savings. Attention is drawn to, the level of awareness and understanding of refurbishment activity that needs to be raised in the current construction process alongside factors that include the positive environmental impact and the saving of energy. The approach here is to look at buildings that have been built by private construction companies that have already been refurbished by occupants and to suggest additional control mechanisms for retrofitting that can further enhance the process of renewal. The objective of the research is to investigate the occupants’ behaviour and role in the refurbishment activity; to explore how and why occupants decide to change building components and to understand why and how occupants consider using energy-efficient materials. The present work is based on data from this researcher’s first-hand experience and incorporates the preliminary data collection on recent housing sector statistics, including the year in which housing estates were built, an examination of the characteristics that define the construction industry in the T.R.N.C., building typology and the demographic structure of house owners. The housing estates are chosen from 16 different projects in four different regions of the T.R.N.C. that include urban and suburban areas. There is, therefore, a broad representation of the common drivers in the property market, each with different levels of refurbishment activity and this is coupled with different samplings from different climatic regions within the T.R.N.C. The study is conducted through semi-structured interviews to identify occupants’ behaviour as it is associated with refurbishment activity. The interviews provide all the occupants’ demographic information, needs and intentions as they relate to various aspects of the refurbishment process. This research paper presents the results of semi-structured interviews with 70 homeowners in a selected group of 16 housing estates in five different parts of the T.R.N.C. The people who agreed to be interviewed in this study are all residents of single or multi-family housing units. Alongside the construction process and its impact on the environment, the results point out the need for control mechanisms in the housing sector to promote and support the adoption of retrofit strategies and minimize non-controlled refurbishment activities, in line with diagnostic information of the selected buildings. The expected solutions should be effective, environmentally acceptable and feasible given the type of housing projects under review, with due regard for their location, the climatic conditions within which they were undertaken, the socio-economic standing of the house owners and their attitudes, local resources and legislative constraints. Furthermore, the study goes on to insist on the practical and long-term economic benefits of refurbishment under the proper conditions and why this should be fully understood by the householders.Keywords: construction process, energy-efficiency, refurbishment activity, retrofitting
Procedia PDF Downloads 32569 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 7268 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing
Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto
Abstract:
In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration
Procedia PDF Downloads 24667 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 8466 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 22965 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 7364 A Genetic Identification of Candida Species Causing Intravenous Catheter-Associated Candidemia in Heart Failure Patients
Authors: Seyed Reza Aghili, Tahereh Shokohi, Shirin Sadat Hashemi Fesharaki, Mohammad Ali Boroumand, Bahar Salmanian
Abstract:
Introduction: Intravenous catheter-associated fungal infection as nosocomial infection continue to be a deep problem among hospitalized patients, decreasing quality of life and adding healthcare costs. The capacity of catheters in the spread of candidemia in heart failure patients is obvious. The aim of this study was to evaluate the prevalence and genetic identification of Candida species in heart disorder patients. Material and Methods: This study was conducted in Tehran Hospital of Cardiology Center (Tehran, Iran, 2014) during 1.5 years on the patients hospitalized for at least 7 days and who had central or peripheral vein catheter. Culture of catheters, blood and skin of the location of catheter insertion were applied for detecting Candida colonies in 223 patients. Identification of Candida species was made on the basis of a combination of various phenotypic methods and confirmed by sequencing the ITS1-5.8S-ITS2 region amplified from the genomic DNA using PCR and the NCBI BLAST. Results: Of the 223 patients samples tested, we identified totally 15 Candida isolates obtained from 9 (4.04%) catheter cultures, 3 (1.35%) blood cultures and 2 (0.90%) skin cultures of the catheter insertion areas. On the base of ITS region sequencing, out of nine Candida isolates from catheter, 5(55.6%) C. albicans, 2(22.2%) C. glabrata, 1(11.1%) C. membranifiaciens and 1 (11.1%) C. tropicalis were identified. Among three Candida isolates from blood culture, C. tropicalis, C. carpophila and C. membranifiaciens were identified. Non-candida yeast isolated from one blood culture was Cryptococcus albidus. One case of C. glabrata and one case of Candida albicans were isolated from skin culture of the catheter insertion areas in patients with positive catheter culture. In these patients, ITS region of rDNA sequence showed a similarity between Candida isolated from the skin and catheter. However, the blood samples of these patients were negative for fungal growth. We report two cases of catheter-related candidemia caused by C. membranifiaciens and C. tropicalis on the base of genetic similarity of species isolated from blood and catheter which were treated successfully with intravenous fluconazole and catheter removal. In phenotypic identification methods, we could only identify C. albicans and C. tropicalis and other yeast isolates were diagnosed as Candida sp. Discussion: Although more than 200 species of Candida have been identified, only a few cause diseases in humans. There is some evidence that non-albicans infections are increasing. Many risk factors, including prior antibiotic therapy, use of a central venous catheter, surgery, and parenteral nutrition are considered to be associated with candidemia in hospitalized heart failure patients. Identifying the route of infection in candidemia is difficult. Non-albicans candida as the cause of candidemia is increasing dramatically. By using conventional method, many non-albicans isolates remain unidentified. So, using more sensitive and specific molecular genetic sequencing to clarify the aspects of epidemiology of the unknown candida species infections is essential. The positive blood and catheter cultures for candida isolates and high percentage of similarity of their ITS region of rDNA sequence in these two patients confirmed the diagnosis of intravenous catheter-associated candidemia.Keywords: catheter-associated infections, heart failure patient, molecular genetic sequencing, ITS region of rDNA, Candidemia
Procedia PDF Downloads 33263 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography
Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq
Abstract:
Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury
Procedia PDF Downloads 7062 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments
Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak
Abstract:
The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments
Procedia PDF Downloads 6361 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand
Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk
Abstract:
Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment
Procedia PDF Downloads 12960 Multi-scale Geographic Object-Based Image Analysis (GEOBIA) Approach to Segment a Very High Resolution Images for Extraction of New Degraded Zones. Application to The Region of Mécheria in The South-West of Algeria
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
A considerable area of Algerian lands are threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mécheriadepartment generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of PlanetScope PSB.SB sensors images by September 29, 2021. As a second step, we prospect the use of a multi-scale geographic object-based image analysis (GEOBIA) approach to segment the high spatial resolution images acquired on heterogeneous surfaces that vary according to human influence on the environment. We have used the fractal net evolution approach (FNEA) algorithm to segment images (Baatz&Schäpe, 2000). Multispectral data, a digital terrain model layer, ground truth data, a normalized difference vegetation index (NDVI) layer, and a first-order texture (entropy) layer were used to segment the multispectral images at three segmentation scales, with an emphasis on accurately delineating the boundaries and components of the sand accumulation areas (Dune, dunes fields, nebka, and barkhane). It is important to note that each auxiliary data contributed to improve the segmentation at different scales. The silted areas were classified using a nearest neighbor approach over the Naâma area using imagery. The classification of silted areas was successfully achieved over all study areas with an accuracy greater than 85%, although the results suggest that, overall, a higher degree of landscape heterogeneity may have a negative effect on segmentation and classification. Some areas suffered from the greatest over-segmentation and lowest mapping accuracy (Kappa: 0.79), which was partially attributed to confounding a greater proportion of mixed siltation classes from both sandy areas and bare ground patches. This research has demonstrated a technique based on very high-resolution images for mapping sanded and degraded areas using GEOBIA, which can be applied to the study of other lands in the steppe areas of the northern countries of the African continent.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 10959 Nuclear Powered UAV for Surveillances and Aerial Photography
Authors: Rajasekar Elangopandian, Anand Shanmugam
Abstract:
Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line
Procedia PDF Downloads 41058 “Self-Torturous Thresholds” in Post-WWII Japan: Three Thresholds to Queer Japanese Futures
Authors: Maari Sugawara
Abstract:
This arts-based research is about "self-torture": the interplay of seemingly opposing elements of pain, pleasure, submission, and power. It asserts that "self-torture" can be considered a nontrivial mediation between the aesthetic and the sociopolitical. It explores what the author calls queered self-torture; "self-torture" marked by an ambivalence that allows the oppressed to resist, and their counter-valorization occasionally functions as therapeutic solutions to the problems they highlight and condense. The research goal is to deconstruct normative self-torture and propose queered self-torture as a fertile ground for considering the complexities of desire that allow the oppressed to practice freedom. While “self-torture” manifests in many societies, this research focuses on cultural and national identity in post-WWII Japan using this lens of self-torture, as masochism functions as the very basis for Japanese cultural and national identity to ensure self-preservation. This masochism is defined as an impulse to realize a sense of pride and construct an identity through the acceptance of subordination, shame, and humiliation in the face of an all-powerful Other; the dominant Euro-America. It could be argued that this self-torture is a result of Japanese cultural annihilation and the trauma of the nation's defeat to the US. This is the definition of "self-torturous thresholds," the author’s post-WWII Japan psycho-historical diagnosis; when this threshold is crossed, the oppressed begin to torture themselves; the oppressors no longer need to do anything to maintain their power. The oppressed are already oppressing themselves. The term "oppressed" here refers to Japanese individuals and residents of Japan who are subjected to oppressive “white” heteropatriarchal supremacist structures and values that serve colonialist interests. There are three stages in "self-torturous thresholds": (1) the oppressors no longer need to oppress because the oppressed voluntarily commit to self-torture; (2) the oppressed find pleasure in self-torture; and (3) the oppressed achieve queered self-torture, to achieve alternative futures. Using the conceptualization of "self-torture," this research examines and critiques pleasure, desire, capital, and power in postwar Japan, which enables the discussion of the data-colonizing “Moonshot Research and Development program”. If the oppressed want to divest from the habits of normative self-torture, which shape what is possible in both our present and future, we need methods to feel and know that the alternative results of self-torture are possible. Phase three will be enacted using Sarah Ahmed's queer methodology to reorient national and cultural identity away from heteronormativity. Through theoretical analysis, textual analysis, archival research, ethnographic interviews, and digital art projects, including experimental documentary as a method to capture the realities of the individuals who are practicing self-torture, this research seeks to reveal how self-torture may become not just a vehicle of pleasure but also a mode of critiquing power and achieving freedom. It seeks to encourage the imaginings of queer Japanese futures, where the marginalized survive Japan’s natural and man-made disasters and Japan’s Imperialist past and present rather than submitting to the country’s continued violence.Keywords: arts-based research, Japanese studies, interdisciplinary arts, queer studies, cultural studies, popular culture, BDSM, sadomasochism, sexuality, VR, AR, digital art, visual arts, speculative fiction
Procedia PDF Downloads 7357 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 16956 Mixed-Methods Analyses of Subjective Strategies of Most Unlikely but Successful Transitions from Social Benefits to Work
Authors: Hirseland Andreas, Kerschbaumer Lukas
Abstract:
In the case of Germany, there are about one million long-term unemployed – a figure that did not vary much during the past years. These long-term unemployed did not benefit from the prospering labor market while most short-term unemployed did. Instead, they are continuously dependent on welfare and sometimes precarious short-term employment, experiencing work poverty. Long-term unemployment thus turns into a main obstacle to become employed again, especially if it is accompanied by other impediments such as low-level education (school/vocational), poor health (especially chronical illness), advanced age (older than fifty), immigrant status, motherhood or engagement in care for other relatives. As can be shown by this current research project, in these cases the chance to regain employment decreases to near nil. Almost two-thirds of all welfare recipients have multiple impediments which hinder a successful transition from welfare back to sustainable and sufficient employment. Prospective employers are unlikely to hire long-term unemployed with additional impediments because they evaluate potential employees on their negative signaling (e.g. low-level education) and the implicit assumption of unproductiveness (e.g. poor health, age). Some findings of the panel survey “Labor market and social security” (PASS) carried out by the Institute of Employment Research (the research institute of the German Federal Labor Agency) spread a ray of hope, showing that unlikely does not necessarily mean impossible. The presentation reports on current research on these very scarce “success stories” of unlikely transitions from long-term unemployment to work and how these cases were able to perform this switch against all odds. The study is based on a mixed-method design. Within the panel survey (~15,000 respondents in ~10,000 households), only 66 cases of such unlikely transitions were observed. These cases have been explored by qualitative inquiry – in depth-interviews and qualitative network techniques. There is strong evidence that sustainable transitions are influenced by certain biographical resources like habits of network use, a set of informal skills and particularly a resilient way of dealing with obstacles, combined with contextual factors rather than by job-placement procedures promoted by Job-Centers according to activation rules or by following formal paths of application. On the employer’s side small and medium-sized enterprises are often found to give job opportunities to a wider variety of applicants, often based on a slow but steadily increasing relationship leading to employment. According to these results it is possible to show and discuss some limitations of (German) activation policies targeting the labor market and their impact on welfare dependency and long-term unemployment. Based on these findings, indications for more supportive small-scale measures in the field of labor-market policies are suggested to help long-term unemployed with multiple impediments to overcome their situation (e.g. organizing small-scale-structures and low-threshold services to encounter possible employers on a more informal basis like “meet and greet”).Keywords: against-all-odds, mixed-methods, Welfare State, long-term unemployment
Procedia PDF Downloads 36355 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 11954 Philippine Site Suitability Analysis for Biomass, Hydro, Solar, and Wind Renewable Energy Development Using Geographic Information System Tools
Authors: Jara Kaye S. Villanueva, M. Rosario Concepcion O. Ang
Abstract:
For the past few years, Philippines has depended most of its energy source on oil, coal, and fossil fuel. According to the Department of Energy (DOE), the dominance of coal in the energy mix will continue until the year 2020. The expanding energy needs in the country have led to increasing efforts to promote and develop renewable energy. This research is a part of the government initiative in preparation for renewable energy development and expansion in the country. The Philippine Renewable Energy Resource Mapping from Light Detection and Ranging (LiDAR) Surveys is a three-year government project which aims to assess and quantify the renewable energy potential of the country and to put them into usable maps. This study focuses on the site suitability analysis of the four renewable energy sources – biomass (coconut, corn, rice, and sugarcane), hydro, solar, and wind energy. The site assessment is a key component in determining and assessing the most suitable locations for the construction of renewable energy power plants. This method maximizes the use of both the technical methods in resource assessment, as well as taking into account the environmental, social, and accessibility aspect in identifying potential sites by utilizing and integrating two different methods: the Multi-Criteria Decision Analysis (MCDA) method and Geographic Information System (GIS) tools. For the MCDA, Analytical Hierarchy Processing (AHP) is employed to determine the parameters needed for the suitability analysis. To structure these site suitability parameters, various experts from different fields were consulted – scientists, policy makers, environmentalists, and industrialists. The need to have a well-represented group of people to consult with is relevant to avoid bias in the output parameter of hierarchy levels and weight matrices. AHP pairwise matrix computation is utilized to derive weights per level out of the expert’s gathered feedback. Whereas from the threshold values derived from related literature, international studies, and government laws, the output values were then consulted with energy specialists from the DOE. Geospatial analysis using GIS tools translate this decision support outputs into visual maps. Particularly, this study uses Euclidean distance to compute for the distance values of each parameter, Fuzzy Membership algorithm which normalizes the output from the Euclidean Distance, and the Weighted Overlay tool for the aggregation of the layers. Using the Natural Breaks algorithm, the suitability ratings of each of the map are classified into 5 discrete categories of suitability index: (1) not suitable (2) least suitable, (3) suitable, (4) moderately suitable, and (5) highly suitable. In this method, the classes are grouped based on the best groups similar values wherein each subdivision are set from the rest based on the big difference in boundary values. Results show that in the entire Philippine area of responsibility, biomass has the highest suitability rating with rice as the most suitable at 75.76% suitability percentage, whereas wind has the least suitability percentage with score 10.28%. Solar and Hydro fall in the middle of the two, with suitability values 28.77% and 21.27%.Keywords: site suitability, biomass energy, hydro energy, solar energy, wind energy, GIS
Procedia PDF Downloads 14953 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada
Authors: Stefan W. Kienzle
Abstract:
The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes
Procedia PDF Downloads 9252 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 47351 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 5450 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa
Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini
Abstract:
Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time
Procedia PDF Downloads 15249 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results
Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma
Abstract:
Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis
Procedia PDF Downloads 16948 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture
Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán
Abstract:
Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing
Procedia PDF Downloads 9347 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean
Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin
Abstract:
Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content
Procedia PDF Downloads 26046 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange
Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas
Abstract:
Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis
Procedia PDF Downloads 6645 Microsimulation of Potential Crashes as a Road Safety Indicator
Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale
Abstract:
Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.Keywords: road safety, traffic, traffic safety, traffic simulation
Procedia PDF Downloads 13544 Inverse Problem Method for Microwave Intrabody Medical Imaging
Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara
Abstract:
Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.Keywords: FDTD, time-reversed, medical imaging, microwave imaging
Procedia PDF Downloads 127