Search results for: energy addition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15395

Search results for: energy addition

13925 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model

Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki

Abstract:

As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.

Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China

Procedia PDF Downloads 266
13924 Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes

Authors: I. Hossain, Huda H. Kassim, Fadhil I. Sharrad, Said A. Mansour

Abstract:

In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei.

Keywords: B(E2), energy level, ¹⁰⁴Ru, ¹⁰⁶Ru

Procedia PDF Downloads 330
13923 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 456
13922 Feasibilty and Penetration of Electric Vehicles in Indian Power Grid

Authors: Kashyap L. Mokariya, Varsha A. Shah, Makarand M. Lokhande

Abstract:

As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of Energy security and climate change. Rising demand of fuel and its dependency on other countries affects the GDP of nation. So in this context if the 10 percent of vehicle got operated in Electrical mode how much saving in terms of Rs and in terms of liters is achieved has been analyzed which is also a part of Nations Electric mobility mission plan. Analysis is also done for converting unit consumption of Electricity of Electric vehicle into equivalent fuel consumption in liters which shows that at present tariff rate Electrical operated vehicles are far more beneficial. It also gives benchmark to the authorities to set the tariff rate for Electrical vehicles. Current situation of Indian grid is shown and how the Gap between Generation and Demand can be reduced is analyzed in terms of increasing generation capacity and Energy Conservation measures. As the certain regions of country is facing serious deficit than how to take energy conservation measures in Industry and especially in rural areas where generally Energy Auditing is not carried out that is analyzed in context of Electric vehicle penetration in near future. Author was a part of Vishvakarma yojna where in 255 villages of Gujarat Energy losses were measured and solutions were given to mitigate them and corresponding report to the authorities of villages was delivered.

Keywords: vehiclepenetration, feasibility, Energyconservation, future grid, Energy security, pf controller

Procedia PDF Downloads 342
13921 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine

Authors: Mohammed Nabeel Khan, C. Perisamy

Abstract:

Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.

Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex

Procedia PDF Downloads 148
13920 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation

Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras

Abstract:

The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.

Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation

Procedia PDF Downloads 134
13919 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage

Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad

Abstract:

Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.

Keywords: yoghurt, artificial sweetener, storage, quality parameters

Procedia PDF Downloads 464
13918 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)

Procedia PDF Downloads 264
13917 The Antecedents That Effect on Organizational Commitment of the Public Enterprises in Thailand

Authors: Mananya Meenakorn

Abstract:

The purpose of this study is to examine the impact of public enterprise reform policy on the attributes of organizational commitments in the public energy enterprises in Thailand. It compares three structural types of public energy enterprises: totally state-owned public enterprises, partially transformed public enterprises and totally transformed public enterprises, based on the degree of state ownership and the level of management control that exist in the public reformed organizations, by analyzing the presence of the desirable attributes of organizational commitment as perceived by employees. Findings indicate that there are statistically significant differences in the level of some dimensions of organizational commitment between the three types of public energy enterprises. The results also indicate empirical evidence concerning the causal relationship between the antecedents and organizational commitment. Whereas change-related behaviors show a direct negative influence on organizational commitment, both HRM practices and work-related values indicate direct positive influences on them also.

Keywords: affective commitment, organizational commitment, public enterprise reform organizations, public energy enterprises in Thailand

Procedia PDF Downloads 271
13916 Optimal Applications of Solar Energy Systems: Comparative Analysis of Ground-Mounted and Rooftop Solar PV Installations in Drought-Prone and Residential Areas of the Indian Subcontinent

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhyay

Abstract:

The increasing demand for environmentally friendly energy solutions highlights the need to optimize solar energy systems. This study compares two types of solar energy systems: ground-mounted solar panels for drought-prone locations and rooftop solar PV installations measuring 300 sq. ft. (approx. 28 sq. m.). The electricity output of 4730 kWh/year saves ₹ 14191/year. As a clean and sustainable energy source, solar power is pivotal in reducing greenhouse gas CO2 emissions reduction by 85 tonnes in 25 years and combating climate change. This effort, "PM Suryadaya Ghar-Muft Bijli Yojana," seeks to empower Indian homes by giving free access to solar energy. The initiative is part of the Indian government's larger attempt to encourage clean and renewable energy sources while reducing reliance on traditional fossil fuels. This report reviews various installations and government reports to analyse the performance and impact of both ground-mounted and rooftop solar systems. Besides, effectiveness of government subsidy programs for residential on-grid solar systems, including the ₹78,000 incentive for systems above 3 kW. The study also looks into the subsidy schemes available for domestic agricultural grid use. Systems up to 3 kW receive ₹43,764, while systems over 10 kW receive a fixed subsidy of ₹94,822. Households can save a substantial amount of energy and minimize their reliance on grid electricity by installing the proper solar plant capacity. In terms of monthly consumption at home, the acceptable Rooftop Solar Plant capacity for households is 0-150 units (1-2 kW), 150-300 units (2-3 kW), and >300 units (above 3 kW). Ground-mounted panels, particularly in arid regions, offer benefits such as scalability and optimal orientation but face challenges like land use conflicts and environmental impact, particularly in drought-prone regions. By evaluating the distinct advantages and challenges of each system, this study aims to provide insights into their optimal applications, guiding stakeholders in making informed decisions to enhance solar energy efficiency and sustainability within regulatory constraints. This research also explores the implications of regulations, such as Italy's ban on ground-mounted solar panels on productive agricultural land, on solar energy strategies.

Keywords: sustainability, solar energy, subsidy, rooftop solar energy, renewable energy

Procedia PDF Downloads 22
13915 Smart Production Planning: The Case of Aluminium Foundry

Authors: Samira Alvandi

Abstract:

In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.

Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries

Procedia PDF Downloads 49
13914 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide

Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji

Abstract:

Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.

Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin

Procedia PDF Downloads 398
13913 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 248
13912 Assessing the Feasibility of Incorporating Green Infrastructure into Colonial-Era Buildings in the Caribbean

Authors: Luz-Marina Roberts, Ancil Kirk, Aisha Donaldson, Anya Seepaul, Jade Lakhan, Shianna Tikasingh

Abstract:

Climate change has produced a crisis that particularly threatens small island states in the Caribbean. Developers and climate enthusiasts alike are now forced to find new and sustainable ways of building. Focus on existing buildings is particularly needed in Trinidad and Tobago, like other islands, especially as these countries are vulnerable to climate threats and geographic locations with close proximity to a hurricane. Additionally, since many colonial-era style buildings still exist, the idea that they are energy inefficient is at the forefront of the work of policy-makers. The question that remains is can these buildings be retrofitted to reflect the modern era while considering climate resilience. This paper aims to investigate the energy efficiency of colonial-era buildings in Port of Spain and whether these buildings in Trinidad and Tobago, if found to be energy inefficient, can be more energy efficient and sustainable. This involves collecting surveys from building management in colonial-era buildings and researching literature on colonial architecture in the Caribbean and modern innovations in green building designs. Additionally, the data and experiences from the Town and Country Planning Division in the Ministry of Planning and Development of Trinidad and Tobago will inform the paper. This research will aid in re-envisioning how green infrastructure can be applied to urban environments with older buildings and help inform planning policy as it relates to sustainability and energy efficiency.

Keywords: spatial planning, climate resilience, energy efficiency, sustainable development

Procedia PDF Downloads 55
13911 Solar Power Monitoring and Control System using Internet of Things

Authors: Oladapo Tolulope Ibitoye

Abstract:

It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.

Keywords: solar system, internet of things, renewable energy, power monitoring

Procedia PDF Downloads 65
13910 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium

Authors: Y. J. Chen, T. M. Yue, Z. N. Guo

Abstract:

This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.

Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load

Procedia PDF Downloads 193
13909 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 495
13908 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 224
13907 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation

Procedia PDF Downloads 312
13906 Estimation and Utilization of Landfill Gas from Egyptian Municipal Waste: A Case Study

Authors: Ali A. Hashim Habib, Ahmed A. Abdel-Rehim

Abstract:

Assuredly, massive amounts of wastes that are not utilized and dumped in uncontrolled dumpsites will be one of the major sources of diseases, fires, and emissions. With easy steps and minimum effort, energy can be produced from these gases. The present work introduces an experimental and theoretical analysis to estimate the amount of landfill gas and the corresponding energy which can be produced based on actual Egyptian municipal wastes composition. Two models were utilized and compared, EPA (Environmental Protection Agency) model and CDM (Clean Development Mechanisms) model to estimate methane generation rates and total CH4 emissions based on a particular landfill. The results showed that for every ton of municipal waste, 140 m3 of landfill gas can be produced. About 800 kW of electricity for a minimum of 24 years can be generated form one million ton of municipal waste. A total amount of 549,025 ton of carbon emission can be avoided during these 24 years.

Keywords: energy from landfill gases, landfill biogas, methane emission, municipal solid waste, renewable energy sources

Procedia PDF Downloads 205
13905 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 317
13904 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox

Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao

Abstract:

New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.

Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation

Procedia PDF Downloads 120
13903 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

Authors: Kewen Li

Abstract:

Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.

Keywords: TEG, direct power generation, efficiency, thermoelectric effect

Procedia PDF Downloads 229
13902 Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture

Authors: Farhan Lafta Rashid, Khudhair Abass Dawood, Ahmed Hashim

Abstract:

Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3.

Keywords: energy storage, enhancement absorbed heat, glass impurities, solar energy

Procedia PDF Downloads 419
13901 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 116
13900 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: supply chain management, green supply chain, green design, green manufacturing, mathematical model

Procedia PDF Downloads 788
13899 Ab Initio Calculations of Structure and Elastic Properties of BexZn1−xO Alloys

Authors: S. Lakel, F. Elhamra, M. Ibrir, K. Almi

Abstract:

There is a growing interest in Zn1-xBexO (ZBO)/ZnO hetero structures and quantum wells since the band gap energy of Zn1-xBexO solid solutions can be turned over a very large range (3.37–10.6 eV) as a function of the Be composition. ZBO/ZnO has been utilized in ultraviolet light emission diodes and lasers, and may find applications as active elements of various other electronic and optoelectronic devices. Band gap engineering by Be substitution enables the facile preparation of barrier layers and quantum wells in device structures. In addition, ZnO and its ternary alloys, as piezoelectric semiconductors, have been used for high-frequency surface acoustic wave devices in wireless communication systems due to their high acoustic velocities and large electromechanical coupling. However, many important parameters such as elastic constants, bulk modulus, Young’s modulus and band-gap bowing. First-principles calculations of the structural, electrical and elastic properties of Zn1-xBexO as a function of the Be concentration x have been performed within density functional theory using norm-conserving pseudopotentials and local density approximation (LDA) for the exchange and correlation energy. The alloys’ lattice constants may deviate from the Vegard law. As Be concentration increases, the elastic constants, the bulk modulus and Young’s modulus of the alloys increase, the band gap increases with increasing Be concentration and Zn1-xBexO alloys have direct band. Our calculated results are in good agreement with experimental data and other theoretical calculations.

Keywords: DFT calculation, norm-conserving pseudopotentials, ZnBeO alloys, ZnO

Procedia PDF Downloads 504
13898 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 119
13897 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 119
13896 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)

Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud

Abstract:

Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.

Keywords: electric vehicle, redox flow battery, packaging, vanadium

Procedia PDF Downloads 417