Search results for: Elham Shahrjooi Haghighi
8 Biodegradation of Triclosan and Tetracycline in Sewage Sludge by Pleurotus Ostreatus Fungal Pellets
Authors: Ayda Maadani Mallak, Amir lakzian, Elham Khodaverdi, Gholam Hossein Haghnia
Abstract:
The use of pharmaceuticals and personal care products such as antibiotics and antibacterials has been increased in recent years. Since the major part of consumed compounds remains unchanged in the wastewater treatment plant, they will easily find their way into the human food chain following the land use of sewage sludge (SS). Biological treatment of SS is one the most effective methods for expunging contaminants. White rot fungi, due to their ligninolytic enzymes, are extensively used to degrade organic compounds. Among all three different morphological forms and growth patterns of filamentous fungi (mycelia, clumps, and pellets), fungal pellet formation has been the subject of interest in industrial bioprocesses. Therefore this study was aimed to investigate the uptake of tetracycline (TC) and triclosan (TCS) by radish plant (Raphanus sativus) from soil amended with untreated and pretreated SS by P. ostreatus fungal pellets under greenhouse conditions. The experimental soil was amended with 1) Contaminated SS with TC at a concentration of 100 mgkg-1 and pretreated by fungal pellets, 2) Contaminated SS with TC at 100 mgkg-1 and untreated with fungal pellets, 3) Contaminated SS with TCS at a concentration of 50 mgkg-1 and pretreated by fungal pellets, 4) contaminated SS with TCS at 50 mgkg-1 and untreated with fungal pellets. An uncontaminated and untreated SS-amended soil also was considered as control treatment. An AB SCIEX 3200 QTRAP LC-MS/MS system was used in order to analyze the concentration of TC and TCS in plant tissues and soil medium. Results of this study revealed that the presence of TC and TCS in SS-amended soil decreased the radish biomass significantly. The reduction effect of TCS on dry biomass of shoot and root was 39 and 45% compared to controls, whereas for TC, the reduction percentage for shoot and root was 27 and 40.6%, respectively. However, fungal treatment of SS by P. ostreatus pellets reduced the negative effect of both compounds on plant biomass remarkably, as no significant difference was observed compared to control treatments. Pretreatment of SS with P. ostreatus also caused a significant reduction in translocation factor (concentration in shoot/root), especially for TC compound up to 32.3%, whereas this reduction for TCS was less (8%) compared to untreated SS. Generally, the results of this study confirmed the positive effect of using fungal pellets in SS amendment to decrease TC and TCS uptake by radish plants. In conclusion, P. ostreatus fungal pellets might provide future insights into bioaugmentation to remove antibiotics from environmental matrices.Keywords: antibiotic, fungal pellet, sewage sludge, white-rot fungi
Procedia PDF Downloads 1587 The Effect of Physical Guidance on Learning a Tracking Task in Children with Cerebral Palsy
Authors: Elham Azimzadeh, Hamidollah Hassanlouei, Hadi Nobari, Georgian Badicu, Jorge Pérez-Gómez, Luca Paolo Ardigò
Abstract:
Children with cerebral palsy (CP) have weak physical abilities and their limitations may have an effect on performing everyday motor activities. One of the most important and common debilitating factors in CP is the malfunction in the upper extremities to perform motor skills and there is strong evidence that task-specific training may lead to improve general upper limb function among this population. However, augmented feedback enhances the acquisition and learning of a motor task. Practice conditions may alter the difficulty, e.g., the reduced frequency of PG could be more challenging for this population to learn a motor task. So, the purpose of this study was to investigate the effect of physical guidance (PG) on learning a tracking task in children with cerebral palsy (CP). Twenty-five independently ambulant children with spastic hemiplegic CP aged 7-15 years were assigned randomly to five groups. After the pre-test, experimental groups participated in an intervention for eight sessions, 12 trials during each session. The 0% PG group received no PG; the 25% PG group received PG for three trials; the 50% PG group received PG for six trials; the 75% PG group received PG for nine trials; and the 100% PG group, received PG for all 12 trials. PG consisted of placing the experimenter's hand around the children's hand, guiding them to stay on track and complete the task. Learning was inferred by acquisition and delayed retention tests. The tests involved two blocks of 12 trials of the tracking task without any PG being performed by all participants. They were asked to make the movement as accurate as possible (i.e., fewer errors) and the number of total touches (errors) in 24 trials was calculated as the scores of the tests. The results showed that the higher frequency of PG led to more accurate performance during the practice phase. However, the group that received 75% PG had significantly better performance compared to the other groups in the retention phase. It is concluded that the optimal frequency of PG played a critical role in learning a tracking task in children with CP and likely this population may benefit from an optimal level of PG to get the appropriate amount of information confirming the challenge point framework (CPF), which state that too much or too little information will retard learning a motor skill. Therefore, an optimum level of PG may help these children to identify appropriate patterns of motor skill using extrinsic information they receive through PG and improve learning by activating the intrinsic feedback mechanisms.Keywords: cerebral palsy, challenge point framework, motor learning, physical guidance, tracking task
Procedia PDF Downloads 726 Analysis of Sea Waves Characteristics and Assessment of Potential Wave Power in Egyptian Mediterranean Waters
Authors: Ahmed A. El-Gindy, Elham S. El-Nashar, Abdallah Nafaa, Sameh El-Kafrawy
Abstract:
The generation of energy from marine energy became one of the most preferable resources since it is a clean source and friendly to environment. Egypt has long shores along Mediterranean with important cities that need energy resources with significant wave energy. No detailed studies have been done on wave energy distribution in the Egyptian waters. The objective of this paper is to assess the energy wave power available in the Egyptian waters for the choice of the most suitable devices to be used in this area. This paper deals the characteristics and power of the offshore waves in the Egyptian waters. Since the field observations of waves are not frequent and need much technical work, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis data in Mediterranean, with a grid size 0.75 degree, which is a relatively course grid, are considered in the present study for preliminary assessment of sea waves characteristics and power. The used data covers the period from 2012 to 2014. The data used are significant wave height (swh), mean wave period (mwp) and wave direction taken at six hourly intervals, at seven chosen stations, and at grid points covering the Egyptian waters. The wave power (wp) formula was used to calculate energy flux. Descriptive statistical analysis including monthly means and standard deviations of the swh, mwp, and wp. The percentiles of wave heights and their corresponding power are done, as a tool of choice of the best technology suitable for the site. The surfer is used to show spatial distributions of wp. The analysis of data at chosen 7 stations determined the potential of wp off important Egyptian cities. Offshore of Al Saloum and Marsa Matruh, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and October (1.49-1.69) ± (1.45-1.74) kw/m. In front of Alexandria and Rashid, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and September (1.29-2.01) ± (1.31-1.83) kw/m. In front of Damietta and Port Said, the highest wp occurred in February (14.29-17.61) ± (21.61-27.10) kw/m and the lowest occurred in June (0.94-0.96) ± (0.71-0.72) kw/m. In winter, the probabilities of waves higher than 0.8 m in percentage were, at Al Saloum and Marsa Matruh (76.56-80.33) ± (11.62-12.05), at Alexandria and Rashid (73.67-74.79) ± (16.21-18.59) and at Damietta and Port Said (66.28-68.69) ± (17.88-17.90). In spring, the percentiles were, at Al Saloum and Marsa Matruh, (48.17-50.92) ± (5.79-6.56), at Alexandria and Rashid, (39.38-43.59) ± (9.06-9.34) and at Damietta and Port Said, (31.59-33.61) ± (10.72-11.25). In summer, the probabilities were, at Al Saloum and Marsa Matruh (57.70-66.67) ± (4.87-6.83), at Alexandria and Rashid (59.96-65.13) ± (9.14-9.35) and at Damietta and Port Said (46.38-49.28) ± (10.89-11.47). In autumn, the probabilities were, at Al Saloum and Marsa Matruh (58.75-59.56) ± (2.55-5.84), at Alexandria and Rashid (47.78-52.13) ± (3.11-7.08) and at Damietta and Port Said (41.16-42.52) ± (7.52-8.34).Keywords: distribution of sea waves energy, Egyptian Mediterranean waters, waves characteristics, waves power
Procedia PDF Downloads 1915 Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth
Authors: Elham Soltani Dehnavi
Abstract:
In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process.Keywords: occupant experience, office buildings, space depth, thermal comfort, visual comfort
Procedia PDF Downloads 1834 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 713 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 912 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 411 Dietetics Practice in the Scope of Disease Prevention in Community Settings: A School-Based Obesity Prevention Program
Authors: Elham Abbas Aljaaly, Nahlaa Abdulwahab Khalifa
Abstract:
The active method of disease prevention is seen as the most affordable and sustainable action to deal with risks of non-communicable diseases such as obesity. This eight-week project aimed to pilot the feasibility and acceptability of a school-based programme, which is proposed to prevent and modify overweight status and possible related risk factors among student girls 'at the intermediate level' in Jeddah city. The programme was conducted through comprehensible approach targeting physical environment and school policies (nutritional/exercise/behavioural approach). The programme was designed to cultivate the personal and environmental awareness in schools for girls. This was applied by promoting healthy eating and physical activity through policies, physical education, healthier options for school canteens, and the creation of school health teams. The prevention programme was applied on 68 students (who agreed to participate) from grades 7th, 8th and 9th. A pre and post assessment questionnaire was employed on 66 students. The questionnaires were designed to obtain information on students' knowledge about health, nutrition and physical activity. Survey questions included information about nutrients, food consumption patterns, food intake and lifestyle. Physical education included training sessions for new opportunities for physical activities to be performed during school or after school hours. A running competition 'to enhance students’ performance for physical activities' was also conducted during the school visit. A visit to the school canteen was conducted to check, observe, record and assess all available food/beverage items and meals. The assessment method was a subjective method for the type of food/beverages if high in saturated fat, salt and sugar (HFSS) or non-HFSS. The school canteen administrators were encouraged to provide healthy food/beverage items and a sample healthy canteen was provided for implementation. Two healthy options were introduced to the school canteen. A follow up for students’ preferences for the introduced options and the purchasing power were assessed. Thirty-eight percent of young girls (n=26) were not participating in any form of physical activities inside or outside school. Skipping breakfast was stated by 42% (n=28) of students with no daily consumption (19%, n=13) for fruit/vegetables. Significant changes were noticed in students’ (n=66) overall responses to the pre and post questions (P value=.001). All students had participated in the conducted running competition sessions and reported satisfaction and enjoyment about the sessions. No absence was reported by the research team for attending physical education and activity sessions throughout the delivered programme. The purchasing power of the introduced healthy options of 'Salad and oatmeal' was increased to 18% in 8 weeks at the school canteen, and slightly affected the purchase for other less healthy options. The piloted programme indorsed better health and nutrition knowledge, healthy eating and lifestyle attitude, which could help young girls to obtain sustainable changes. It is expected that the outcomes of the programme will be a cornerstone for the futuristic national study that will assist policy makers and participants to build a knowledgeable health promotion scenario and make sure that school students have access to healthy foods, physical exercise and healthy lifestyle.Keywords: adolescents, diet, exercise, behaviours, overweight/obesity, prevention-intervention programme, Saudi Arabia, schoolgirls
Procedia PDF Downloads 129