Search results for: artificial microRNA approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15524

Search results for: artificial microRNA approach

14114 Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile

Authors: Zulfikar Dinar Wahidayat Putra

Abstract:

Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city.

Keywords: arid area, sustainable water system, urban harvest approach, self-sufficiency

Procedia PDF Downloads 265
14113 The Relational Approach under the Angle of the CSR

Authors: Fatima El Kandoussi, Hind Benouakrim, Afafe El Amrani El Hassani

Abstract:

CSR in the relational approach is imposed today as a matter of concerns lighthouses in the academic environment and managerial. This study presents the issues of the CSR dimension in the field of relationship marketing. This exploratory research was conducted with two groups of Moroccan enterprises having the label of the CSR /CGEM. It presents a better understanding of the approaches taken by the companies interviewed in a CSR and contributed to understand the reasons that lead them to adopt the process of CSR and also allows explaining how these enterprises maintain their relationship with the most important customers in a context of CSR.

Keywords: relationship marketing, CSR, stakeholders, business

Procedia PDF Downloads 447
14112 Hybrid Approach for Controlling Inductive Load Fed by a Multicellular Converter by Using the Petri Nets

Authors: I. Bentchikou, A. Tlemcani, F. Boudjema, D. Boukhetala, N. Ould Cherchali

Abstract:

In this paper, hybrid approach is proposed to regulate the voltages of the floating capacitor multicell inverter and the current in the load. This structure makes it possible to ensure the distribution of the voltage stresses on the various low-voltage semiconductor components connected in series. And as the problem and to keep a constant voltage across the capacitors. Thus, it is necessary to ensure a distribution balanced voltages at the terminals of floating capacitors thanks to Algorithm develop for this, using the Petri nets. So we consider a three-cell converter represented as a hybrid system with eight modes of operation. The operating modes of the system are governed by the control reference voltage and a reference current. Finally, we present the results of the simulation with MATLAB/SIMULINK to illustrate the performances of this approach.

Keywords: hybrid control, floating condensers, multicellular converter, petri nets

Procedia PDF Downloads 127
14111 The Effect of Behavioral and Risk Factors of Investment Growth on Stock Returns

Authors: Majid Lotfi Ghahroud, Seyed Jalal Tabatabaei, Ebrahim Karami, AmirArsalan Ghergherechi, Amir Ali Saeidi

Abstract:

In this study, the relationship between investment growth and stock returns of companies listed in Tehran Stock Exchange and whether their relationship -behavioral or risk factors- are discussed. Generally, there are two perspectives; risk-based approach and behavioral approach. According to the risk-based approach due to increase investment, systemic risk and consequently the stock returns are reduced. But due to the second approach, an excessive optimism or pessimism leads to assuming stock price with high investment growth in the past, higher than its intrinsic value and the price of stocks with lower investment growth, less than its intrinsic value. The investigation period is eight years from 2007 to 2014. The sample consisted of all companies listed on the Tehran Stock Exchange. The method is a portfolio test, and the analysis is based on the t-student test (t-test). The results indicate that there is a negative relationship between investment growth and stock returns of companies and this negative correlation is stronger for firms with higher cash flow. Also, the negative relationship between asset growth and stock returns is due to behavioral factors.

Keywords: behavioral theory, investment growth, risk-based theory, stock returns

Procedia PDF Downloads 156
14110 The Nation in Turmoil: A Post - Colonial Critique of Mqapheli Mngdi's Cartoons

Authors: Sizwe Dlamini

Abstract:

There seems to be little that has been done to investigate cartoons from a literary criticism point of view. Cartoons have been given attention mostly in semiotics as compared to other scholarly perspectives. The aim of this article is to attempt to bridge this gap by observing cartoons through the post-colonial approach as a literary theory. Even though the post-colonial approach has been previously adopted to critique the prose genre and other genres in the African indigenous languages of South Africa, there seems to be no study that has used this approach to analyse the cartoon genre. This study is thus believed to be valuable to scientific knowledge in this sense. The study adopts textual analysis as a qualitative research technique since cartoons are the primary sources of data collection. Through the application of the post-colonial theory, the findings of the study demonstrate that there are depicted socio-cultural, socio-economic, and political issues in Mngadi’s editorial cartoons. These include.

Keywords: editorial cartoons, post-colonial theory, literary criticism, turmoil

Procedia PDF Downloads 19
14109 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248
14108 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment

Authors: Guldana Zhigerbayeva, Ming Yang

Abstract:

Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.

Keywords: hazardous materials, risk assessment, risk management, quality function deployment

Procedia PDF Downloads 142
14107 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 566
14106 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 194
14105 A Machine Learning Approach to Detecting Evasive PDF Malware

Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran

Abstract:

The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.

Keywords: PDF, PDF malware, decision tree classifier, random forest classifier

Procedia PDF Downloads 91
14104 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 80
14103 Potentials and Challenges of Implementing Participatory Irrigation Management, Tanzania

Authors: Pilly Joseph Kagosi

Abstract:

The study aims at assessing challenges observed during implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation and literature review. Data collected from questionnaire was analyzed using SPSS while PRA data was analyzed with the help of local communities during PRA exercise. Data from other methods were analyzed using content analysis. The study revealed that PIM approach has contribution in improved food security at household level due to involvement of communities in water management activities and decision making which enhanced availability of water for irrigation and increased crop production. However there were challenges observed during implementation of the approach including; minimum participation of beneficiaries in decision making during planning and designing stages, meaning inadequate devolution of power among scheme owners; Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that, the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.

Keywords: potentials of implementing participatory approach, challenges of participatory approach, irrigation management, Tanzania

Procedia PDF Downloads 305
14102 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
14101 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
14100 Penetrating Neck Injury: No Zone Approach

Authors: Abhishek Sharma, Amit Gupta, Manish Singhal

Abstract:

Background: The management of patients with penetrating neck injuries in the prehospital setting and in the emergency department has evolved with regard to the use of multidetector computed tomographic (MDCT) imaging. Hence, there is a shift in the management of neck injuries from mandatory exploration in certain anatomic areas to more conservative approach using imaging and so-called “no zone approach”. Objective: To study the no zone approach in the management of penetrating neck injury using routine imaging in all stable patients. Methods: 137 patients with penetrating neck injury attending emergency department of level 1 trauma centre at AIIMS between 2008–2014 were retrospectively analysed. All hemodynamically stable patients were evaluated using CT scanning. Results: Stab injury is most common (55.91%) mode of pni in civilian population followed by gunshot(18.33%). The majority of patients could be managed with imaging and close observation. 39 patients (28.46%) required operative intervention. The most common indication for operative intervention was vascular followed by airway injury manifesting as hemodynamic destabilisation.There was no statistical difference between the zonal distribution of injuries in patients managed conservatively and those taken to OR. Conclusions: Study shows that patients with penetrating neck trauma who are haemodynamically stable and exhibit no “hard signs” of vascular injury or airway injury may be evaluated initially by MDCT imaging even when platysma violation is present. “No Zone” policy may be superior to traditional zone wise management.

Keywords: penetrating neck injury, zone approach, CT scanning, multidetector computed tomographic (MDCT)

Procedia PDF Downloads 402
14099 An Approach for Modeling CMOS Gates

Authors: Spyridon Nikolaidis

Abstract:

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model

Procedia PDF Downloads 423
14098 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 175
14097 Risk Management Approach for Lean, Agile, Resilient and Green Supply Chain

Authors: Benmoussa Rachid, Deguio Roland, Dubois Sebastien, Rasovska Ivana

Abstract:

Implementation of LARG (Lean, Agile, Resilient, Green) practices in the supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. To implement these LARG practices successfully, companies’ need relevant decision making tools allowing processes performance control and improvement strategies visibility. To contribute to this issue, this work tries to answer the following research question: How to master performance and anticipate problems in supply chain LARG practices implementation? To answer this question, a risk management approach (RMA) is adopted. Indeed, the proposed RMA aims basically to assess the ability of a supply chain, guided by “Lean, Green and Achievement” performance goals, to face “agility and resilience risk” factors. To proof its relevance, a logistics academic case study based on simulation is used to illustrate all its stages. It shows particularly how to build the “LARG risk map” which is the main output of this approach.

Keywords: agile supply chain, lean supply chain, green supply chain, resilient supply chain, risk approach

Procedia PDF Downloads 312
14096 Regulatory and Economic Challenges of AI Integration in Cyber Insurance

Authors: Shreyas Kumar, Mili Shangari

Abstract:

Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.

Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware

Procedia PDF Downloads 33
14095 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 129
14094 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 94
14093 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 394
14092 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 82
14091 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.

Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis

Procedia PDF Downloads 365
14090 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management

Authors: Irina Khutsishvili

Abstract:

The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.

Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set

Procedia PDF Downloads 428
14089 Growing Architecture, Technical Product Harvesting of Near Net Shape Building Components

Authors: Franziska Moser, Martin Trautz, Anna-Lena Beger, Manuel Löwer, Jörg Feldhusen, Jürgen Prell, Alexandra Wormit, Björn Usadel, Christoph Kämpfer, Thomas-Benjamin Seiler, Henner Hollert

Abstract:

The demand for bio-based materials and components in architecture has increased in recent years due to society’s heightened environmental awareness. Nowadays, most components are being developed via a substitution approach, which aims at replacing conventional components with natural alternatives who are then being processed, shaped and manufactured to fit the desired application. This contribution introduces a novel approach to the development of bio-based products that decreases resource consumption and increases recyclability. In this approach, natural organisms like plants or trees are not being used in a processed form, but grow into a near net shape before then being harvested and utilized as building components. By minimizing the conventional production steps, the amount of resources used in manufacturing decreases whereas the recyclability increases. This paper presents the approach of technical product harvesting, explains the theoretical basis as well as the matching process of product requirements and biological properties, and shows first results of the growth manipulation studies.

Keywords: design with nature, eco manufacturing, sustainable construction materials, technical product harvesting

Procedia PDF Downloads 500
14088 Distributed Leadership: An Alternative at Higher Education Institutions in Turkey

Authors: Sakine Sincer

Abstract:

In today’s world, which takes further steps towards globalization each and every day, societies and cultures are re-shaped while the demands of the changing world are described once more. In this atmosphere, where the speed of change sometimes reaches a terrifying point, it is possible to state that effective leaders are needed more than ever in order to meet the above-stated needs and demands. The question of what effective leadership is keeping its importance on the agenda. Most of the answers to this question has mostly focused on the approach of distributed leadership recently. This study aims at analyzing the applicability of distributed leadership, which is accepted to be an example of effective leadership that can meet the needs of global world, which is changing more and more rapidly nowadays, at higher education institutions in Turkey. Within the framework of this study, first of all, the historical development of distributed leadership is addressed, and then a theoretical framework is drawn for this approach by means of underlying what distributed leadership is and is not. After that, different points of view about the approach are laid out within the borders of opinions expressed by Gronn and Spillane, who are accepted to be the most famous advocators of distributed leadership. Then, exemplar practices of distributed leadership are included in the study before drawing attention to the strengths and weaknesses of this approach. Lastly, the applicability of distributed leadership at higher education institutions in Turkey is analyzed. This study is carried out with the method of literature review by resorting to first- and second-hand sources on distributed leadership.

Keywords: globalization, school leadership, distributed leadership, higher education, management

Procedia PDF Downloads 404
14087 Using Participatory Action Research with Episodic Volunteers: Learning from Urban Agriculture Initiatives

Authors: Rebecca Laycock

Abstract:

Many Urban Agriculture (UA) initiatives, including community/allotment gardens, Community Supported Agriculture, and community/social farms, depend on volunteers. However, initiatives supported or run by volunteers are often faced with a high turnover of labour as a result of the involvement of episodic volunteers (a term describing ad hoc, one-time, and seasonal volunteers), leading to challenges with maintaining project continuity and retaining skills/knowledge within the initiative. This is a notable challenge given that food growing is a knowledge intensive activity where the fruits of labour appear months or sometimes years after investment. Participatory Action Research (PAR) is increasingly advocated for in the field of UA as a solution-oriented approach to research, providing concrete results in addition to advancing theory. PAR is a cyclical methodological approach involving researchers and stakeholders collaboratively 'identifying' and 'theorising' an issue, 'planning' an action to address said issue, 'taking action', and 'reflecting' on the process. Through iterative cycles and prolonged engagement, the theory is developed and actions become better tailored to the issue. The demand for PAR in UA research means that understanding how to use PAR with episodic volunteers is of critical importance. The aim of this paper is to explore (1) the challenges of doing PAR in UA initiatives with episodic volunteers, and (2) how PAR can be harnessed to advance sustainable development of UA through theoretically-informed action. A 2.5 year qualitative PAR study on three English case study student-led food growing initiatives took place between 2014 and 2016. University UA initiatives were chosen as exemplars because most of their volunteers were episodic. Data were collected through 13 interviews, 6 workshops, and a research diary. The results were thematically analysed through eclectic coding using Computer-Assisted Qualitative Data Analysis Software (NVivo). It was found that the challenges of doing PAR with transient participants were (1) a superficial understanding of issues by volunteers because of short term engagement, resulting in difficulties ‘identifying’/‘theorising’ issues to research; (2) difficulties implementing ‘actions’ given those involved in the ‘planning’ phase often left by the ‘action’ phase; (3) a lack of capacity of participants to engage in research given the ongoing challenge of maintaining participation; and (4) that the introduction of the researcher acted as an ‘intervention’. The involvement of a long-term stakeholder (the researcher) changed the group dynamics, prompted critical reflections that had not previously taken place, and improved continuity. This posed challenges for providing a genuine understanding the episodic volunteering PAR initiatives, and also challenged the notion of what constitutes an ‘intervention’ or ‘action’ in PAR. It is recommended that researchers working with episodic volunteers using PAR should (1) adopt a first-person approach by inquiring into the researcher’s own experience to enable depth in theoretical analysis to manage the potentially superficial understandings by short-term participants; and (2) establish safety mechanisms to address the potential for the research to impose artificial project continuity and knowledge retention that will end when the research does. Through these means, we can more effectively use PAR to conduct solution-oriented research about UA.

Keywords: community garden, continuity, first-person research, higher education, knowledge retention, project management, transience, university

Procedia PDF Downloads 248
14086 Knowledge Elicitation Approach for Formal Ontology Design: An Exploratory Study Applied in Industry for Knowledge Management

Authors: Ouassila Labbani-Narsis, Christophe Nicolle

Abstract:

Building formal ontologies remains a complex process for companies. In the literature, this process is based on the technical knowledge and expertise of domain experts, without further details on the used methodologies. Possible problems of disagreements between experts, expression of tacit knowledge related to high level know-how rarely verbalized, qualification of results by using cases, or simply adhesion of the group of experts, remain currently unsolved. This paper proposes a methodological approach based on knowledge elicitation for the conception of formal, consensual, and shared ontologies. The proposed approach is experimentally tested on industrial collaboration projects in the field of manufacturing (associating knowledge sources from multinational companies) and in the field of viticulture (associating explicit knowledge and implicit knowledge acquired through observation).

Keywords: collaborative ontology engineering, knowledge elicitation, knowledge engineering, knowledge management

Procedia PDF Downloads 78
14085 A Soft System Methodology Approach to Stakeholder Engagement in Water Sensitive Urban Design

Authors: Lina Lukusa, Ulrike Rivett

Abstract:

Poor water management can increase the extreme pressure already faced by water scarcity. Unless water management is addressed holistically, water quality and quantity will continue to degrade. A holistic approach to water management named Water Sensitive Urban Design (WSUD) has thus been created to facilitate the effective management of water. Traditionally, water management has employed a linear design approach, while WSUD requires a systematic, cyclical approach. In simple terms, WSUD assumes that everything is connected. Hence, it is critical for different stakeholders involved in WSUD to engage and reach a consensus on a solution. However, many stakeholders in WSUD have conflicting interests. Using the soft system methodology (SSM), developed by Peter Checkland, as a problem-solving method, decision-makers can understand this problematic situation from different world views. The SSM addresses ill and complex challenging situations involving human activities in a complex structured scenario. This paper demonstrates how SSM can be applied to understand the complexity of stakeholder engagement in WSUD. The paper concludes that SSM is an adequate solution to understand a complex problem better and then propose efficient solutions.

Keywords: co-design, ICT platform, soft systems methodology, water sensitive urban design

Procedia PDF Downloads 121