Search results for: elliptic curve digital signature algorithm
6093 Low-Complexity Multiplication Using Complement and Signed-Digit Recoding Methods
Authors: Te-Jen Chang, I-Hui Pan, Ping-Sheng Huang, Shan-Jen Cheng
Abstract:
In this paper, a fast multiplication computing method utilizing the complement representation method and canonical recoding technique is proposed. By performing complements and canonical recoding technique, the number of partial products can be reduced. Based on these techniques, we propose an algorithm that provides an efficient multiplication method. On average, our proposed algorithm is to reduce the number of k-bit additions from (0.25k+logk/k+2.5) to (k/6 +logk/k+2.5), where k is the bit-length of the multiplicand A and multiplier B. We can therefore efficiently speed up the overall performance of the multiplication. Moreover, if we use the new proposes to compute common-multiplicand multiplication, the computational complexity can be reduced from (0.5 k+2 logk/k+5) to (k/3+2 logk/k+5) k-bit additions.Keywords: algorithm design, complexity analysis, canonical recoding, public key cryptography, common-multiplicand multiplication
Procedia PDF Downloads 4356092 The Digital Desert in Global Business: Digital Analytics as an Oasis of Hope for Sub-Saharan Africa
Authors: David Amoah Oduro
Abstract:
In the ever-evolving terrain of international business, a profound revolution is underway, guided by the swift integration and advancement of disruptive technologies like digital analytics. In today's international business landscape, where competition is fierce, and decisions are data-driven, the essence of this paper lies in offering a tangible roadmap for practitioners. It is a guide that bridges the chasm between theory and actionable insights, helping businesses, investors, and entrepreneurs navigate the complexities of international expansion into sub-Saharan Africa. This practitioner paper distils essential insights, methodologies, and actionable recommendations for businesses seeking to leverage digital analytics in their pursuit of market entry and expansion across the African continent. What sets this paper apart is its unwavering focus on a region ripe with potential: sub-Saharan Africa. The adoption and adaptation of digital analytics are not mere luxuries but essential strategic tools for evaluating countries and entering markets within this dynamic region. With the spotlight firmly fixed on sub-Saharan Africa, the aim is to provide a compelling resource to guide practitioners in their quest to unearth the vast opportunities hidden within sub-Saharan Africa's digital desert. The paper illuminates the pivotal role of digital analytics in providing a data-driven foundation for market entry decisions. It highlights the ability to uncover market trends, consumer behavior, and competitive landscapes. By understanding Africa's incredible diversity, the paper underscores the importance of tailoring market entry strategies to account for unique cultural, economic, and regulatory factors. For practitioners, this paper offers a set of actionable recommendations, including the creation of cross-functional teams, the integration of local expertise, and the cultivation of long-term partnerships to ensure sustainable market entry success. It advocates for a commitment to continuous learning and flexibility in adapting strategies as the African market evolves. This paper represents an invaluable resource for businesses, investors, and entrepreneurs who are keen on unlocking the potential of digital analytics for informed market entry in Africa. It serves as a guiding light, equipping practitioners with the essential tools and insights needed to thrive in this dynamic and diverse continent. With these key insights, methodologies, and recommendations, this paper is a roadmap to prosperous and sustainable market entry in Africa. It is vital for anyone looking to harness the transformational potential of digital analytics to create prosperous and sustainable ventures in a region brimming with promise. In the ever-advancing digital age, this practitioner paper becomes a lodestar, guiding businesses and visionaries toward success amidst the unique challenges and rewards of sub-Saharan Africa's international business landscape.Keywords: global analytics, digital analytics, sub-Saharan Africa, data analytics
Procedia PDF Downloads 726091 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 2906090 Children’s (re)actions in the Scaffolding Process Using Digital Technologies
Authors: Davoud Masoumi, Maryam Bourbour
Abstract:
By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.Keywords: children’ (re)actions, scaffolding process, technologies, preschools
Procedia PDF Downloads 836089 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments
Authors: Shari S. C. Shang, Lynn S. L. Chiu
Abstract:
In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions
Procedia PDF Downloads 1606088 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image
Authors: Sangeeta Yadav, Mantosh Biswas
Abstract:
In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.Keywords: cluster, ncolor method, K-mean method, interactive selection process
Procedia PDF Downloads 2976087 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures
Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui
Abstract:
The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.Keywords: multi-cores DSP, scheduling, SMT solver, workflow
Procedia PDF Downloads 2866086 Mechanism of Changing a Product Concept
Authors: Kiyohiro Yamazaki
Abstract:
The purpose of this paper is to examine the hypothesis explaining the mechanism in the case, where the product is deleted or reduced the fundamental function of the product through the product concept changes in the digital camera industry. This paper points out not owning the fundamental technology might cause the change of the product concept. Casio could create new competitive factor so that this paper discusses a possibility of the mechanism of changing the product concept.Keywords: firm without fundamental technology, product development, product concept, digital camera industry, Casio
Procedia PDF Downloads 5626085 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany
Authors: Bara' Al-Mistarehi
Abstract:
Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure
Procedia PDF Downloads 1796084 Vibration Control of a Flexible Structure Using MFC Actuator
Authors: Jinsiang Shaw, Jeng-Jie Huang
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression
Procedia PDF Downloads 4626083 Swarm Optimization of Unmanned Vehicles and Object Localization
Authors: Venkataramana Sovenahalli Badigar, B. M. Suryakanth, Akshar Prasanna, Karthik Veeramalai, Vishwak Ram Vishwak Ram
Abstract:
Technological advances have led to widespread autonomy in vehicles. Empowering these autonomous with the intelligence to cooperate amongst themselves leads to a more efficient use of the resources available to them. This paper proposes a demonstration of a swarm algorithm implemented on a group of autonomous vehicles. The demonstration involves two ground bots and an aerial drone which cooperate amongst them to locate an object of interest. The object of interest is modelled using a high-intensity light source which acts as a beacon. The ground bots are light sensitive and move towards the beacon. The ground bots and the drone traverse in random paths and jointly locate the beacon. This finds application in various scenarios in where human interference is difficult such as search and rescue during natural disasters, delivering crucial packages in perilous situations, etc. Experimental results show that the modified swarm algorithm implemented in this system has better performance compared to fully random based moving algorithm for object localization and tracking.Keywords: swarm algorithm, object localization, ground bots, drone, beacon
Procedia PDF Downloads 2576082 Research on Straightening Process Model Based on Iteration and Self-Learning
Authors: Hong Lu, Xiong Xiao
Abstract:
Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.Keywords: straightness, straightening stroke, deflection, shaft parts
Procedia PDF Downloads 3286081 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model
Authors: Donatella Giuliani
Abstract:
In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation
Procedia PDF Downloads 2176080 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 2886079 Examination Scheduling System with Proposed Algorithm
Authors: Tabrej Khan
Abstract:
Examination Scheduling System (ESS) is a scheduling system that targets as an exam committee in any academic institute to help them in managing the exams automatically. We present an algorithm for Examination Scheduling System. Nowadays, many universities have challenges with creating examination schedule fast with less confliction compared to hand works. Our aims are to develop a computerized system that can be used in examination scheduling in an academic institute versus available resources (Time, Hall, Invigilator and instructor) with no contradiction and achieve fairness among students. ESS was developed using HTML, C# language, Crystal Report and ASP.NET through Microsoft Visual Studio 2010 as developing tools with integrated SQL server database. This application can produce some benefits such as reducing the time spent in creating an exam schedule and achieving fairness among studentsKeywords: examination scheduling system (ESS), algorithm, ASP.NET, crystal report
Procedia PDF Downloads 4046078 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 646077 Exploring Multimodal Communication: Intersections of Language, Gesture, and Technology
Authors: Rasha Ali Dheyab
Abstract:
In today's increasingly interconnected and technologically-driven world, communication has evolved beyond traditional verbal exchanges. This paper delves into the fascinating realm of multimodal communication, a dynamic field at the intersection of linguistics, gesture studies, and technology. The study of how humans convey meaning through a combination of spoken language, gestures, facial expressions, and digital platforms has gained prominence as our modes of interaction continue to diversify. This exploration begins by examining the foundational theories in linguistics and gesture studies, tracing their historical development and mutual influences. It further investigates the role of nonverbal cues, such as gestures and facial expressions, in augmenting and sometimes even altering the meanings conveyed by spoken language. Additionally, the paper delves into the modern technological landscape, where emojis, GIFs, and other digital symbols have emerged as new linguistic tools, reshaping the ways in which we communicate and express emotions. The interaction between traditional and digital modes of communication is a central focus of this study. The paper investigates how technology has not only introduced new modes of expression but has also influenced the adaptation of existing linguistic and gestural patterns in online discourse. The emergence of virtual reality and augmented reality environments introduces yet another layer of complexity to multimodal communication, offering new avenues for studying how humans navigate and negotiate meaning in immersive digital spaces. Through a combination of literature review, case studies, and theoretical analysis, this paper seeks to shed light on the intricate interplay between language, gesture, and technology in the realm of multimodal communication. By understanding how these diverse modes of expression intersect and interact, we gain valuable insights into the ever-evolving nature of human communication and its implications for fields ranging from linguistics and psychology to human-computer interaction and digital anthropology.Keywords: multimodal communication, linguistics ., gesture studies., emojis., verbal communication., digital
Procedia PDF Downloads 816076 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm
Authors: A. Baviskar, C. Sandeep, K. Shankar
Abstract:
Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)
Procedia PDF Downloads 2776075 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: linked open data, information integration, digital libraries, data mining
Procedia PDF Downloads 4266074 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service
Authors: Mabrouka Algherinai, Fatma Karkouri
Abstract:
Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.Keywords: SMS, RSA, McEliece, RABIN
Procedia PDF Downloads 1636073 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 3536072 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 4276071 A Method for Compression of Short Unicode Strings
Authors: Masoud Abedi, Abbas Malekpour, Peter Luksch, Mohammad Reza Mojtabaei
Abstract:
The use of short texts in communication has been greatly increasing in recent years. Applying different languages in short texts has led to compulsory use of Unicode strings. These strings need twice the space of common strings, hence, applying algorithms of compression for the purpose of accelerating transmission and reducing cost is worthwhile. Nevertheless, other compression methods like gzip, bzip2 or PAQ due to high overhead data size are not appropriate. The Huffman algorithm is one of the rare algorithms effective in reducing the size of short Unicode strings. In this paper, an algorithm is proposed for compression of very short Unicode strings. At first, every new character to be sent to a destination is inserted in the proposed mapping table. At the beginning, every character is new. In case the character is repeated for the same destination, it is not considered as a new character. Next, the new characters together with the mapping value of repeated characters are arranged through a specific technique and specially formatted to be transmitted. The results obtained from an assessment made on a set of short Persian and Arabic strings indicate that this proposed algorithm outperforms the Huffman algorithm in size reduction.Keywords: Algorithms, Data Compression, Decoding, Encoding, Huffman Codes, Text Communication
Procedia PDF Downloads 3486070 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan
Authors: Muhammad Afzal, Muhammad Sajjad
Abstract:
Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.Keywords: climate change, economic growth, energy, environment
Procedia PDF Downloads 1646069 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico
Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez
Abstract:
The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem
Procedia PDF Downloads 3676068 A Survey on Types of Noises and De-Noising Techniques
Authors: Amandeep Kaur
Abstract:
Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.Keywords: de-noising techniques, edges, image, image processing
Procedia PDF Downloads 3366067 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3466066 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4356065 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines
Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi
Abstract:
One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine
Procedia PDF Downloads 606064 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 457