Search results for: text segmentation
472 Improving Second Language Speaking Skills via Video Exchange
Authors: Nami Takase
Abstract:
Computer-mediated-communication allows people to connect and interact with each other as if they were sharing the same space. The current study examined the effects of using video letters (VLs) on the development of second language speaking skills of Common European Framework of Reference for Languages (CEFR) A1 and CEFR B2 level learners of English as a foreign language. Two groups were formed to measure the impact of VLs. The experimental and control groups were given the same topic, and both groups worked with a native English-speaking university student from the United States of America. Students in the experimental group exchanged VLs, and students in the control group used video conferencing. Pre- and post-tests were conducted to examine the effects of each practice mode. The transcribed speech-text data showed that the VL group had improved speech accuracy scores, while the video conferencing group had increased sentence complexity scores. The use of VLs may be more effective for beginner-level learners because they are able to notice their own errors and replay videos to better understand the native speaker’s speech at their own pace. Both the VL and video conferencing groups provided positive feedback regarding their interactions with native speakers. The results showed how different types of computer-mediated communication impacts different areas of language learning and speaking practice and how each of these types of online communication tool is suited to different teaching objectives.Keywords: computer-assisted-language-learning, computer-mediated-communication, english as a foreign language, speaking
Procedia PDF Downloads 100471 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 17470 Realistic Modeling of the Preclinical Small Animal Using Commercial Software
Authors: Su Chul Han, Seungwoo Park
Abstract:
As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.Keywords: mimics, preclinical small animal, segmentation, 3D printer
Procedia PDF Downloads 367469 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 184468 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: beliefs, digital stories, preservice teachers, practicum
Procedia PDF Downloads 442467 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 122466 Information Technology Approaches to Literature Text Analysis
Authors: Ayse Tarhan, Mustafa Ilkan, Mohammad Karimzadeh
Abstract:
Science was considered as part of philosophy in ancient Greece. By the nineteenth century, it was understood that philosophy was very inclusive and that social and human sciences such as literature, history, and psychology should be separated and perceived as an autonomous branch of science. The computer was also first seen as a tool of mathematical science. Over time, computer science has grown by encompassing every area in which technology exists, and its growth compelled the division of computer science into different disciplines, just as philosophy had been divided into different branches of science. Now there is almost no branch of science in which computers are not used. One of the newer autonomous disciplines of computer science is digital humanities, and one of the areas of digital humanities is literature. The material of literature is words, and thanks to the software tools created using computer programming languages, data that a literature researcher would need months to complete, can be achieved quickly and objectively. In this article, three different tools that literary researchers can use in their work will be introduced. These studies were created with the computer programming languages Python and R and brought to the world of literature. The purpose of introducing the aforementioned studies is to set an example for the development of special tools or programs on Ottoman language and literature in the future and to support such initiatives. The first example to be introduced is the Stylometry tool developed with the R language. The other is The Metrical Tool, which is used to measure data in poems and was developed with Python. The latest literature analysis tool in this article is Voyant Tools, which is a multifunctional and easy-to-use tool.Keywords: DH, literature, information technologies, stylometry, the metrical tool, voyant tools
Procedia PDF Downloads 153465 Ideology Shift in Political Translation
Authors: Jingsong Ma
Abstract:
In political translation, ideology plays an important role in conveying implications accurately. Ideological collisions can occur in political translation when there existdifferences of political environments embedded in the translingual political texts in both source and target languages. To reach an accurate translationrequires the translatorto understand the ideologies implied in (and often transcending) the texts. This paper explores the conditions, procedure, and purpose of processingideological collision and resolution of such issues in political translation. These points will be elucidated by case studies of translating English and Chinese political texts. First, there are specific political terminologies in certain political environments. These terminological peculiarities in one language are often determined by ideological elements rather than by syntactical and semantical understanding. The translation of these ideological-loaded terminologiesis a process and operation consisting of understanding the ideological context, including cultural, historical, and political situations. This will be explained with characteristic Chinese political terminologies and their renderings in English. Second, when the ideology in the source language fails to match with the ideology in the target language, the decisions to highlight or disregard these conflicts are shaped by power relations, political engagement, social context, etc. It thus is necessary to go beyond linguisticanalysis of the context by deciphering ideology in political documents to provide a faithful or equivalent rendering of certain messages. Finally, one of the practical issues is about equivalence in political translation by redefining the notion of faithfulness and retainment of ideological messages in the source language in translations of political texts. To avoid distortion, the translator should be liberated from grip the literal meaning, instead diving into functional meanings of the text.Keywords: translation, ideology, politics, society
Procedia PDF Downloads 112464 South Africa’s Post-Apartheid Film Narratives of HIV/AIDS: A Case of ‘Yesterday’
Authors: Moyahabo Molefe
Abstract:
The persistence of HIV/AIDS infection rates in SA has not only been a subject of academic debate but a mediated narrative that has dominated SA’s post-apartheid film space over the last two decades. SA’s colonial geo-spatial architecture still influences migrant labour patterns, which the Oscar-nominated (2003) SA film ‘Yesterday’ has erstwhile reflected upon, yet continues to account for the spread of HIV/AIDS in SA society. Accordingly, men who had left their homes in the rural areas to work in the mines in the cities become infected with HIV/AIDS, only to return home to infect their wives or partners in the rural areas. This paper analyses, through Social Semiotic theory, how SA geo-spatial arrangement had raptured family structures with both men and women taking new residences in the urban areas where they work away from their homes. By using Social semiotic theory, this paper seeks to understand how images and discourses have been deployed in the film ‘Yesterday’ to demonstrate how HIV/AIDS is embedded in the socio-cultural, economic and political architect of SA society. The study uses qualitative approach and content/text/visual semiotic analysis to decipher meanings from array of imagery and discourses/dialogues that are used to mythologise the relationship between the spread of HIV/AIDS and SA migrant labour patterns. The findings of the study are significant to propose a conceptual framework that can be used to mitigate the spread of HIV/AIDS among SA populace, against the backdrop of changing migrant labour patterns and other related factorsKeywords: colonialism, decoloniality, HIV/AIDS, labour migration patterns, social semiotics
Procedia PDF Downloads 77463 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings
Authors: Chen Wang, Jared Evans, Yan Asmann
Abstract:
With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing
Procedia PDF Downloads 257462 A Qualitative Study of Health-Related Beliefs and Practices among Vegetarians
Authors: Lorena Antonovici, Maria Nicoleta Turliuc
Abstract:
The process of becoming a vegetarian involves changes in several life aspects, including health. Despite its relevance, however, little research has been carried out to analyze vegetarians' self-perceived health, and even less empirical attention has received in the Romanian population. This study aimed to assess health-related beliefs and practices among vegetarian adults in a Romanian sample. We have undertaken 20 semi-structured interviews (10 males, 10 females) based on a snowball sample with a mean age of 31 years. The interview guide was divided into three sections: causes of adopting the diet, general aspects (beliefs, practices, tensions, and conflicts) and consequences of adopting the diet (significant changes, positive aspects, and difficulties, physical and mental health). Additional anamnestic data were reported by means of a questionnaire. Data analyses were performed using Tropes text analysis software (v. 8.2) and SPSS software (v. 24.0.) Findings showed that most of the participants considered a vegetarian diet as a natural and healthy choice as opposed to meat-eating, which is not healthy, and its consumption should be moderated among omnivores. A higher proportion of participants (65%) had an average body mass index (BMI), and several women even assumed having certain affections that no longer occur after following a vegetarian diet. Moreover, participants admitted having better moods and mental health status, given their self-contentment with the dietary choice. Relatives were perceived as more skeptical about their practices than others, and especially women had this view. This study provides a valuable insight into health-related beliefs and practices and how a vegetarian diet might interact.Keywords: beliefs, health, practices, vegetarians
Procedia PDF Downloads 126461 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 159460 A Corpus-Based Approach to Understanding Market Access in Fisheries and Aquaculture: A Systematic Literature Review
Authors: Cheryl Marie Cordeiro
Abstract:
Although fisheries and aquaculture studies might seem marginal to international business (IB) studies in general, fisheries and aquaculture IB (FAIB) management is currently facing increasing pressure to meet global demand and consumption for fish in the next coming decades. In part address to this challenge, the purpose of this systematic review of literature (SLR) study is to investigate the use of the term ‘market access’ in its context of use in the generic literature and business sector discourse, in comparison to the more specific literature and discourse in fisheries, aquaculture and seafood. This SLR aims to uncover the knowledge/interest gaps between the academic subject discourses and business sector practices. Corpus driven in methodology and using a triangulation method of three different text analysis software including AntConc, VOSviewer and Web of Science (WoS) analytics, the SLR results indicate a gap in conceptual knowledge and business practices in how ‘market access’ is conceived and used in the context of the pharmaceutical healthcare industry and FAIB research and practice. While it is acknowledged that the product orientation of different business sectors might differ, this SLR study works with the assumption that both business sectors are global in orientation. These business sectors are complex in their operations from product to market. This SLR suggests a conceptual model in understanding the challenges, the potential barriers as well as avenues for solutions to developing market access for FAIB.Keywords: market access, fisheries and aquaculture, international business, systematic literature review
Procedia PDF Downloads 147459 Comparing the Sequence and Effectiveness of Teaching the Four Basic Operations and Mathematics in Primary Schools
Authors: Abubakar Sadiq Mensah, Hassan Usman
Abstract:
The study compared the effectiveness of Audition, Multiplication, subtraction and Division (AMSD) and Addition, subtraction, Multiplication and Division (ASMD), sequence of teaching these four basic operations in mathematics to primary one pupil’s in Katsina Local Government, Katsina State. The study determined the sequence that was more effective and mostly adopted by teachers of the operations. One hundred (100) teachers and sixty pupils (60) from primary one were used for the study. The pupils were divided into two equal groups. The researcher taught these operations to each group separately for four weeks (4 weeks). Group one was taught using the ASMD sequence, while group two was taught using ASMD sequence. In order to generate the needed data for the study, questionnaires and tests were administered on the samples. Data collected were analyzed and major findings were arrived at: (i) Two primary mathematics text books were used in all the primary schools in the area; (ii) Each of the textbooks contained the ASMD sequence; (iii) 73% of the teachers sampled adopted the ASMD sequence of teaching these operations; and (iv) Group one of the pupils (taught using AMSD sequence) performed significantly better than their counter parts in group two (taught using AMSD sequence). On the basis of this, the researcher concluded that the AMSD sequence was more effective in teaching the operations than the ASMD sequence. Consequently, the researcher concluded that primary schools teachers, authors of primary mathematics textbooks, and curriculum planner should adopt the AMSD sequence of teaching these operations.Keywords: matematic, high school, four basic operations, effectiveness of teaching
Procedia PDF Downloads 254458 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 114457 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 120456 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 499455 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)
Authors: Carolina Silva Ansélmo
Abstract:
Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay
Procedia PDF Downloads 79454 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 102453 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 106452 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 24451 The Role of Ideophones: Phonological and Morphological Characteristics in Literature
Authors: Cristina Bahón Arnaiz
Abstract:
Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature.Keywords: ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism
Procedia PDF Downloads 150450 Instructional Immediacy Practices in Asynchronous Learning Environment: Tutors' Perspectives
Authors: Samar Alharbi, Yota Dimitriadi
Abstract:
With the exponential growth of information and communication technologies in higher education, new online teaching strategies have become increasingly important for student engagement and learning. In particular, some institutions depend solely on asynchronous e-learning to provide courses for their students. The major challenge facing these institutions is how to improve the quality of teaching and learning in their asynchronous tools. One of the most important methods that can help e-learner to enhance their social learning and social presence in asynchronous learning setting is immediacy. This study explores tutors perceptions of their instructional immediacy practices as part of their communication actions in online learning environments. It was used a mixed-methods design under the umbrella of pragmatic philosophical assumption. The participants included tutors at an educational institution in a Saudi university. The participants were selected with a purposive sampling approach and chose an institution that offered fully online courses to students. The findings of the quantitative data show the importance of teachers’ immediacy practices in an online text-based learning environment. The qualitative data contained three main themes: the tutors’ encouragement of student interaction; their promotion of class participation; and their addressing of the needs of the students. The findings from these mixed methods can provide teachers with insights into instructional designs and strategies that they can adopt in order to use e-immediacy in effective ways, thus improving their students’ online learning experiences.Keywords: asynchronous e-learning, higher education, immediacy, tutor
Procedia PDF Downloads 200449 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review
Authors: Yousuf Nasser Al Khamisi
Abstract:
Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework
Procedia PDF Downloads 139448 Short Association Bundle Atlas for Lateralization Studies from dMRI Data
Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara
Abstract:
Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.Keywords: dMRI, hierarchical clustering, lateralization index, tractography
Procedia PDF Downloads 331447 Writing Hybridized Narratives to Enact Scientific Literacy and the Myth of the Scientific Method
Authors: Ajaz Shaheen, Jawaid Ahmed Siddqui
Abstract:
This world has purely become scientific and technological, and therefore it demands more from our young learners to be more intellectual in learning sciences. A point of concern that is dragging the attention of educationists is that young learners are gradually detaching from science and scientific theory. To deal with this matter, we must arrange such engaging activities that may improve the imaginative skills of our young learners. Our ongoing research program highlights the effects of such activities that demand the learners to interpret scientific information in the form of text they possess. These mixed stories are also known as what we call BioStories. Learners upload their narratives on different websites to let their peers go through their manuscripts. That, as a result, brings more refinement to their works. Moreover, stories allow the learners to read, understand and learn on a broader spectrum. We have conducted separate studies with learners from Grades 6, 9, and 12 that involve case studies and quasi-experimental designs. The conclusion we drew from the analysis of Grade 6 learners was that the alignment of stories helped them become more familiar with the scientific issue. Not only this but also the learners of the respective grade built up their interest in the subject and also developed a clear understanding of related subject topics. On the other hand, results from the 8th and 9th grades study support the argument that learners reflected a positive attitude toward writing scientific information. Lastly, we concluded from the 12th-grade learners that they took pride in their writing skills and built up their strength, determination, and interest. The students became self-conscious as they wrote hybridized scientific narratives in science.Keywords: BioStories, hybridized writing, scientific literacy, scientific method
Procedia PDF Downloads 82446 Implementation of Lean Production in Business Enterprises: A Literature-Based Content Analysis of Implementation Procedures
Authors: P. Pötters, A. Marquet, B. Leyendecker
Abstract:
The objective of this paper is to investigate different implementation approaches for the implementation of Lean production in companies. Furthermore, a structured overview of those different approaches is to be made. Therefore, the present work is intended to answer the following research question: What differences and similarities exist between the various systematic approaches and phase models for the implementation of Lean Production? To present various approaches for the implementation of Lean Production discussed in the literature, a qualitative content analysis was conducted. Within the framework of a qualitative survey, a selection of texts dealing with lean production and its introduction was examined. The analysis presents different implementation approaches from the literature, covering the descriptive aspect of the study. The study also provides insights into similarities and differences among the implementation approaches, which are drawn from the analysis of latent text contents and author interpretations. In this study, the focus is on identifying differences and similarities among systemic approaches for implementing Lean Production. The research question takes into account the main object of consideration, objectives pursued, starting point, procedure, and endpoint of the implementation approach. The study defines the concept of Lean Production and presents various approaches described in literature that companies can use to implement Lean Production successfully. The study distinguishes between five systemic implementation approaches and seven phase models to help companies choose the most suitable approach for their implementation project. The findings of this study can contribute to enhancing transparency regarding the existing approaches for implementing Lean Production. This can enable companies to compare and contrast the available implementation approaches and choose the most suitable one for their specific project.Keywords: implementation, lean production, phase models, systematic approaches
Procedia PDF Downloads 104445 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations
Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri
Abstract:
Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size
Procedia PDF Downloads 226444 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools
Abstract:
Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.Keywords: block matching, digital evidence, hash list, evaluation of digital evidence
Procedia PDF Downloads 255443 Functionality of Promotional and Advertising Texts: Pragmatic Implications for English-Arabic Translation
Authors: Jamal Gaber Abdalla
Abstract:
In business promotion and advertising, language is used intentionally to create a powerful influence over people and their behavior. In commercial and marketing activities, the choice of language to convey specific messages with the intention of influencing people is pragmatically important. Design and visual content in promotional and advertising texts also have a great persuasive impact on consumers. It is the functional combination of design, language and visual content that helps people to identify a product or service and remember it. Translating promotional and advertising texts between structurally and culturally different languages, such as English and Arabic, usually involves pragmatic/functional shifts that decide the quality of translation. This study explores some of these shifts in translating promotional and advertising texts between English and Arabic and their implications for translation quality. The study is based on a contrastive analysis of data collected from real samples of English-Arabic translations of promotional and advertising texts. The samples cover different promotional and advertising text types and different business domains. The aim is to identify the most recurrent translation shifts and most used translation approaches/strategies that achieve quality in view of the functional nature of promotional and advertising texts and target language culture conventions. The study shows that linguistic shifts and visual shifts are recurrent in English-Arabic translations of promotional and advertising texts. The study also shows that the most commonly used translation approaches/strategies are functional translation, domestication, communicative translation.Keywords: advertising, Arabic, English, functional translation, promotion
Procedia PDF Downloads 362