Search results for: roller-compacted concrete (RCC)
780 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation
Authors: Chong Zhang, Mu-Xuan Tao
Abstract:
In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.Keywords: biaxial bending moment capacity, biaxial seismic excitation, fiber beam model, load contour method, strong-column-weak-beam
Procedia PDF Downloads 99779 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 211778 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems
Authors: Daniele Losanno, Giorgio Serino
Abstract:
This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames
Procedia PDF Downloads 290777 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 99776 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading
Procedia PDF Downloads 350775 Structural Performance of Composite Steel and Concrete Beams
Authors: Jakub Bartus
Abstract:
In general, composite steel and concrete structures present an effective structural solution utilizing full potential of both materials. As they have a numerous advantages on the construction side, they can reduce greatly the overall cost of construction, which is the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behaviour having web openings but emphasizes the influence of these openings on the total strain distribution at the level of steel bottom flange as well. The major investigation was focused on a change of structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime object. The study is devided into analytical and numerical part. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered description of imposed structural issue in a form of a finite element model (FEM) using strut and shell elements accounting for material non-linearities. As an outcome, a number of conclusions were drawn describing and explaining an effect of web opening presence on the structural performance of composite beams.Keywords: composite beam, web opening, steel flange, totalstrain, finite element analysis
Procedia PDF Downloads 69774 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos
Authors: Hatthaphone Silimanotham, Michael Henry
Abstract:
The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling
Procedia PDF Downloads 159773 Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake
Authors: Narayan Gurung, Fawu Wang, Ranjan Kumar Dahal
Abstract:
Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal.Keywords: Gorkha earthquake, reinforced concrete structure, Nepal, lesson learnt
Procedia PDF Downloads 202772 Electrical Properties of Cement-Based Piezoelectric Nanoparticles
Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad
Abstract:
Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric
Procedia PDF Downloads 249771 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams
Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche
Abstract:
According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor
Procedia PDF Downloads 318770 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams
Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes
Abstract:
Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel
Procedia PDF Downloads 112769 Mechanical Characterization and Durability of Eco-Efficient Ultra High Performance Concrete
Authors: Valeria Corinaldesi, Nicola Generosi, Jacopo Donnini
Abstract:
Ultra high performance concrete (UHPC) is an innovative material which tends to exhibit superior properties such as incredible mechanical and durability performance and non-brittleness behavior. Over the last twenty years, phenomenal advances have taken place in the research and application of UHPC. Recently, the approach is to improve UHPC sustainability by reducing its embodied energy. First of all, this goal can be achieved by reducing Portland cement dosage. In this work, an experimental investigation was carried out to characterize the mechanical behavior and durability of UHPCs prepared by reducing the cement amount by 30% in order to verify the impact of lower cement content and higher water-to-cement ratio on both mechanical performance and durability, if any. Eight different UHPC mixtures were compared, with two different cement dosages (either 1000 or 700 kg) and four different brass-coated steel fibres dosages (0 - 50 - 100 - 150 kg), in terms of 28-day compressive and flexural strengths. Then, the mixtures prepared with the lower cement content were further investigated in terms of abrasion resistance, water absorption, freezing and thawing cycles, and resistance to sulphate attack. Results obtained showed the feasibility of reducing cement dosage without compromising mechanical performance and UHPC's extraordinary durability.Keywords: abrasion resistance, durability, eco-efficiency, freeze-thawing cycles, steel fibres, sulphate exposure, sustainability, UHPC
Procedia PDF Downloads 76768 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 175767 On Influence of Web Openings Presence on Structural Performance of Steel and Concrete Beams
Authors: Jakub Bartus, Jaroslav Odrobinak
Abstract:
In general, composite steel and concrete structures present an effective structural solution utilizing the full potential of both materials. As they have numerous advantages on the construction side, they can greatly reduce the overall cost of construction, which has been the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behavior having web openings but emphasizes the influence of these openings on the total strain distribution at the level of the steel bottom flange as well. The major investigation was focused on a change in structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime objective. The study is divided into analytical and numerical parts. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered the discretization of the preset structural issue in the form of a finite element (FE) model using beam and shell elements accounting for material non–linearities. As an outcome, several conclusions were drawn describing and explaining the effect of web opening presence on the structural performance of composite beams.Keywords: beam, steel flange, total strain, web opening
Procedia PDF Downloads 77766 Blast Load Resistance of Bridge Columns
Authors: Amir Kavousifard, Lan Lin
Abstract:
The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.Keywords: blast, bridge, charge, height, seismic, standoff
Procedia PDF Downloads 19765 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 113764 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards
Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira
Abstract:
The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification
Procedia PDF Downloads 676763 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure
Authors: Ayman Abd-Elhamed, Sayed Mahmoud
Abstract:
The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shaking. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.Keywords: masonry infill, bare frame, response spectrum, seismic response
Procedia PDF Downloads 403762 Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength
Authors: M. Etezadi, A. Fahimifar
Abstract:
In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated.Keywords: tensile strength, brittle materials, direct and indirect tensile test, numerical modeling
Procedia PDF Downloads 548761 Structural Assessment of Low-Rise Reinforced Concrete Frames under Tsunami Loads
Authors: Hussain Jiffry, Kypros Pilakoutas, Reyes Garcia Lopez
Abstract:
This study examines the effect of tsunami loads on reinforced concrete (RC) frame buildings analytically. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force-time history input records. The analytical results are compared in terms of displacements at the floors and the 'impact point' of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more efficient at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested.Keywords: tsunami loads, hydrodynamic load, impact load, waterborne objects, RC buildings
Procedia PDF Downloads 456760 The Influence of Incorporating in the Concrete of Recycled Waste from Shredding Used Tires and Crushed Glass on Their Characteristics and Behavior
Authors: Samiha Ramdani, Abdelhamid Geuttala
Abstract:
There is no doubt that the batteries increasingly used tires create environmental concerns. Algeria generates large amounts of by industrial and household waste, such as used tires and colored glass bottles and dishes, whose valuation in cementitious materials could be an interesting ecological and economical alternative for broadening eliminating cumbersome landfills. This work is a contribution to the promotion of local materials with the use of waste tires and glass bottle in the development of a new cementitious composite having the acceptable compressive strength and a capacity of improved strains. For this purpose, rubber crumb (GC) from shredding used tires were used as partial replacement of quarry sand with 10%, 20%, 40, 60%. In addition, some mixtures also contain glass powder at15% cement replacement by volume. The compressive strength, tensile strength, deformability, the water permeability and penetration Inions chlorides are studied. As results; an acceptable compressive strength was obtained with the substitution rate of 10% and 20% by volume, the deformability of the composite increases with increased replacement rate. The addition of finely ground glass as a partial replacement of cement concrete increases the resistance to penetration of Inions chloride and reduce the water permeability thereof; then increases their durability.Keywords: crumb rubber, deformability, compressive strength, finely ground glass, durability, behavior law
Procedia PDF Downloads 321759 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading
Authors: Mohammad Zaid, Md. Rehan Sadique
Abstract:
Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.Keywords: finite element method, blast, rock, tunnel, CEL, JWL
Procedia PDF Downloads 147758 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 192757 Noise Measurement and Awareness at Construction Site: A Case Study
Authors: Feiruz Ab'lah, Zarini Ismail, Mohamad Zaki Hassan, Siti Nadia Mohd Bakhori, Mohamad Azlan Suhot, Mohd Yusof Md. Daud, Shamsul Sarip
Abstract:
The construction industry is one of the major sectors in Malaysia. Apart from providing facilities, services, and goods it also offers employment opportunities to local and foreign workers. In fact, the construction workers are exposed to a hazardous level of noises that generated from various sources including excavators, bulldozers, concrete mixer, and piling machines. Previous studies indicated that the piling and concrete work was recorded as the main source that contributed to the highest level of noise among the others. Therefore, the aim of this study is to obtain the noise exposure during piling process and to determine the awareness of workers against noise pollution at the construction site. Initially, the reading of noise was obtained at construction site by using a digital sound level meter (SLM), and noise exposure to the workers was mapped. Readings were taken from four different distances; 5, 10, 15 and 20 meters from the piling machine. Furthermore, a set of questionnaire was also distributed to assess the knowledge regarding noise pollution at the construction site. The result showed that the mean noise level at 5m distance was more than 90 dB which exceeded the recommended level. Although the level of awareness regarding the effect of noise pollution is satisfactory, majority of workers (90%) still did not wear ear protecting device during work period. Therefore, the safety module guidelines related to noise pollution controls should be implemented to provide a safe working environment and prevent initial occupational hearing loss.Keywords: construction, noise awareness, noise pollution, piling machine
Procedia PDF Downloads 385756 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads
Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni
Abstract:
Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair
Procedia PDF Downloads 296755 Historiography of Wood Construction in Portugal
Authors: João Gago dos Santos, Paulo Pereira Almeida
Abstract:
The present study intends to deepen and understand the reasons that led to the decline and disappearance of wooden construction systems in Portugal, for that reason, its use in history must be analyzed. It is observed that this material was an integral part of the construction systems in Europe and Portugal for centuries, and it is possible to conclude that its decline happens with the appearance of hybrid construction and later with the emergence and development of reinforced concrete technology. It is also verified that wood as a constructive element, and for that reason, an element of development had great importance in national construction, with its peak being the Pombaline period, after the 1755 earthquake. In this period, the great scarcity of materials in the metropolis led to the import wood from Brazil for the reconstruction of Lisbon. This period is linked to an accentuated exploitation of forests, resulting in laws and royal decrees aimed at protecting them, guaranteeing the continued existence of profitable forests, crucial to the reconstruction effort. The following period, with the gradual loss of memory of the catastrophe, resulted in a construction that was weakened structurally as a response to a time of real estate speculation and great urban expansion. This was the moment that precluded the inexistence of the use of wood in construction. At the beginning of the 20th century and in the 30s and 40s, with the appearance and development of reinforced concrete, it became part of the great structures of the state, and it is considered a versatile material capable of resolving issues throughout the national territory. It is at this point that the wood falls into disuse and practically disappears from the new works produced.Keywords: construction history, construction in portugal, construction systems, wood construction
Procedia PDF Downloads 123754 Modeling and Behavior of Structural Walls
Authors: Salima Djehaichia, Rachid Lassoued
Abstract:
Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.Keywords: modeling, old building, pushover analysis, structural walls
Procedia PDF Downloads 246753 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 324752 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA
Procedia PDF Downloads 134751 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry
Authors: Ndibarafinia Tobin
Abstract:
Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.Keywords: building defects, building failures, Nigerian construction industry, professionals
Procedia PDF Downloads 297