Search results for: mathematical learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14057

Search results for: mathematical learning activities

12947 Concept for Determining the Focus of Technology Monitoring Activities

Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek

Abstract:

Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.

Keywords: monitoring radar, search field, technology intelligence, technology monitoring

Procedia PDF Downloads 474
12946 The Interactions among Motivation, Persistence, and Learning Abilities as They Relate to Academic Outcomes in Children

Authors: Rachelle M. Johnson, Jenna E. Finch

Abstract:

Motivation, persistence, and learning disability status are all associated with academic performance, but to the author's knowledge, little research has been done on how these variables interact with one another and how that interaction looks different within children with and without learning disabilities. The present study's goal was to examine the role motivation and persistence play in the academic success of children with learning disabilities and how these variables interact. Measurements were made using surveys and direct cognitive assessments on each child. Analyses were run on student's scores in motivation, persistence, and ability to learn compared to other fifth grade students. In this study, learning ability was intended as a proxy for learning disabilities (LDs). This study included a nationally representative sample of over 8,000 fifth-grade children from across the United States. Multiple interactions were found among these variables of motivation, persistence, and motivation as they relate to academic achievement. The major finding of the study was the significant role motivation played in academic achievement. This study shows the importance of measuring the within-group. One key finding was that motivation was associated with academic success and was moderated by the other variables. The interaction results were different for math and reading outcomes, suggesting that reading and math success are different and should be addressed differently. This study shows the importance of measuring the within-group differences in levels of motivation to better understand the academic success of children with and without learning disabilities. This study's findings call for further investigation into motivation and the possible need for motivational intervention for students, especially those with learning disabilities

Keywords: academic achievement, learning disabilities, motivation, persistence

Procedia PDF Downloads 120
12945 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms

Authors: Sanjiti Sharma, Carol Seger

Abstract:

Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.

Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias

Procedia PDF Downloads 26
12944 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 596
12943 Learning Disability or Learning Differences: Understanding Differences Between Cultural and Linguistic Diversity, Learning Differences, and Learning Disabilities

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive make up that characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. CLD students are influenced by many factors (like acculturation and experience) that may impact their achievements and functioning levels. CLD students who develop initial or basic interpersonal communication proficiency skills in the target language are even at a higher risk for being suspected of learning disability when they are underachieving academically. Research indicates that large numbers of students arenot provided the type of education and types of supports they need in order to be successful in an academicenvironment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with CLD students. It is extremely important for the school staff, especially school psychologists, who often are the first experts that are consulted, to be educated about overlapping symptoms and settle differences between learning difference and disability. It is equally important for medical personnel, mainly pediatricians, psychologists, and psychiatrists, to understand the subtle differences to avoid inaccurate opinions. Having the knowledge, school staff can avoid unnecessary referrals for special education evaluations and avoid inaccurate decisions about the presence of a disability. This presentation will illustrate distinctions based on research between learning differences and disabilities, how to recognize them, and how to assess for them.

Keywords: special education, learning disability, differentiation, differences

Procedia PDF Downloads 156
12942 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 378
12941 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
12940 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning

Authors: Jose Ramon Calvo-Ferrer

Abstract:

Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.

Keywords: digital game-based learning, feedback, metacognition, frequency, video games

Procedia PDF Downloads 156
12939 Mathematical Description of Functional Motion and Application as a Feeding Mode for General Purpose Assistive Robots

Authors: Martin Leroux, Sylvain Brisebois

Abstract:

Eating a meal is among the Activities of Daily Living, but it takes a lot of time and effort for people with physical or functional limitations. Dedicated technologies are cumbersome and not portable, while general-purpose assistive robots such as wheelchair-based manipulators are too hard to control for elaborate continuous motion like eating. Eating with such devices has not previously been automated, since there existed no description of a feeding motion for uncontrolled environments. In this paper, we introduce a feeding mode for assistive manipulators, including a mathematical description of trajectories for motions that are difficult to perform manually such as gathering and scooping food at a defined/desired pace. We implement these trajectories in a sequence of movements for a semi-automated feeding mode which can be controlled with a very simple 3-button interface, allowing the user to have control over the feeding pace. Finally, we demonstrate the feeding mode with a JACO robotic arm and compare the eating speed, measured in bites per minute of three eating methods: a healthy person eating unaided, a person with upper limb limitations or disability using JACO with manual control, and a person with limitations using JACO with the feeding mode. We found that the feeding mode allows eating about 5 bites per minute, which should be sufficient to eat a meal under 30min.

Keywords: assistive robotics, automated feeding, elderly care, trajectory design, human-robot interaction

Procedia PDF Downloads 162
12938 The Wider Benefits of Negotiations: Austrian Perspective on Educational Leadership as a ‘Power Game’ for Trade Unions

Authors: Rudolf Egger

Abstract:

This paper explores the relationships between the basic learning processes of leading trade union workers and their methods for coping with the changes in the life-courses of societies today. It will discuss the fragile discourse on lifelong learning in trade unions and the “production of self-techniques” to get in touch with the new economic forms. On the basis of an empirical project, different processes of the socialization of leading trade union workers will be analysed to discover the consequences of the lifelong learning discourse. The results show what competences they need to develop for the “wider benefits of negotiations”. The main challenge remains to make visible how deeply intertwined trade union learning and education are with development in an ongoing dynamic economic process, rather than a quick-fix injection of skills and information. There is a complex relationship existing between the three ‘partners’, work, learning and society forming. The author suggests that contemporary trade unions could be trendsetters who make their own learning agendas by drawing less on formal education and more on informal and non-formal learning contexts. This is in parallel with growing political and scientific consciousness of the need to arrive at new educational/vocational policies and practices.

Keywords: trade union workers, educational leadership, learning societies, social acting

Procedia PDF Downloads 222
12937 Strategies to Improve Learning and Teaching of Software Packages Among Undergraduate Students

Authors: Sara Moridpour

Abstract:

Engineering students need to learn different software packages to meet the emerging industry needs. Face-to-face lectures provide an interactive environment for learning software packages. However, COVID changed expectations of face-to-face learning and teaching. It is essential to enhance the interaction among students and teachers in online and virtual learning and teaching of software packages. The proposed study introduces strategies for teaching engineering software packages in online and hybrid environments and evaluates students’ skills by an authentic assignment.

Keywords: teaching software packages, authentic assessment., engineering, undergraduate students

Procedia PDF Downloads 140
12936 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

Authors: Bahloul Amel

Abstract:

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning

Procedia PDF Downloads 445
12935 AINA: Disney Animation Information as Educational Resources

Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas

Abstract:

With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.

Keywords: information retrieval, animation, educational resources, JiTT

Procedia PDF Downloads 347
12934 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 39
12933 Explaining E-Learning Systems Usage in Higher Education Institutions: UTAUT Model

Authors: Muneer Abbad

Abstract:

This research explains the e-learning usage in a university in Jordan. Unified theory of acceptance and use of technology (UTAUT) model has been used as a base model to explain the usage. UTAUT is a model of individual acceptance that is compiled mainly from different models of technology acceptance. This research is the initial part from full explanations of the users' acceptance model that use Structural Equation Modelling (SEM) method to explain the users' acceptance of the e-learning systems based on UTAUT model. In this part data has been collected and prepared for further analysis. The main factors of UTAUT model has been tested as different factors using exploratory factor analysis (EFA). The second phase will be confirmatory factor analysis (CFA) and SEM to explain the users' acceptance of e-learning systems.

Keywords: e-learning, moodle, adoption, Unified Theory of Acceptance and Use of Technology (UTAUT)

Procedia PDF Downloads 407
12932 A Study to Explore the Views of Students regarding E-Learning as an Instructional Tool at University Level

Authors: Zafar Iqbal

Abstract:

This study involved students of 6th semester enrolled in a Bachelor of Computer Science Program at university level. In this era of science and technology, e-learning can be helpful for grassroots in providing them access to education tenant in less developed areas. It is a potential substitute of face-to-face teaching being used in different countries. The purpose of the study was to explore the views of students about e-learning (Facebook) as an instructional tool. By using purposive sampling technique an intact class of 30 students included both male and female were selected where e-learning was used as an instructional tool. The views of students were explored through qualitative approach by using focus group interviews. The approach was helpful to develop comprehensive understanding of students’ views towards e- learning. In addition, probing questions were also asked and recorded. Data was transcribed, generated nodes and then coded text against these nodes. For this purpose and further analysis, NVivo 10 software was used. Themes were generated and tangibly presented through cluster analysis. Findings were interesting and provide sufficient evidence that face book is a subsequent e-learning source for students of higher education. Students acknowledged it as best source of learning and it was aligned with their academic and social behavior. It was not time specific and therefore, feasible for students who work day time and can get on line access to the material when they got free time. There were some distracters (time wasters) reported by the students but can be minimized by little effort. In short, e-learning is need of the day and potential learning source for every individual who have access to internet living at any part of the globe.

Keywords: e-learning, facebook, instructional tool, higher education

Procedia PDF Downloads 375
12931 Approaches to Promote Healthy Recreation Activities for Elderly Tourists at Bang Nam Phueng Floating Market, Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont

Abstract:

The objectives of this study are to find out the approaches to promote healthy recreation activities for elderly tourists and develop Bang Nam Phueng Floating Market to be a health tourism attraction. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles. As for the results of this study the researcher found that the healthy recreational activities for elderly tourists could be divided in 7 groups; travelling Bang Nam Phueng Floating Market activity, homestay relaxation, arts center platform activity, healthy massage activity, paying homage to a Buddha image activity, herbal joss-stick home activity, making local desserts and food activity.

Keywords: elderly tourists, recreation activities, Bang Nam Phueng Floating Market, health tourism

Procedia PDF Downloads 420
12930 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors

Authors: Yafit Gabay

Abstract:

Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.

Keywords: ADHD, category learning, modality, computational modeling

Procedia PDF Downloads 47
12929 A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations

Authors: Muhammad Saqib Manzoor, Camille Dickson-Deane, Prashan Karunaratne

Abstract:

Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes.

Keywords: cobb-douglas production function, quasi-Delphi method, effective teaching and learning, 3D-visualisations

Procedia PDF Downloads 145
12928 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition

Authors: Sari Myréen

Abstract:

The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.

Keywords: foreign language acquisition, pedagogical approach, multisensory learning, transcultural learning

Procedia PDF Downloads 386
12927 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity

Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo

Abstract:

Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.

Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB

Procedia PDF Downloads 381
12926 The Need for the Utilization of Instructional Materials on the Teaching and Learning of Agricultural Science Education in Developing Countries

Authors: Ogoh Andrew Enokela

Abstract:

This paper dwelt on the need for the utilization of instructional materials with highlights on the type of instructional materials, selection, uses and their importance on the learning and teaching of Agricultural Science Education in developing countries. It further discussed the concept of improvisation with some recommendation in terms of availability, utilization on the teaching and learning of Agricultural Science Education.

Keywords: instructional materials, agricultural science education, improvisation, teaching and learning

Procedia PDF Downloads 322
12925 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 226
12924 The Implementation of Teaching and Learning Quality Assurance System at the Chaoyang University of Technology for Academic Year 2013-2015

Authors: Ting Hsiang Chang

Abstract:

Nowadays in Taiwan, higher education, which was previously more emphasized on teaching-oriented approaches, has gradually shifted to an approach more focusing on students learning outcomes. With student employment rate as an important indicator for University Program Evaluation periodically held by the Ministry of Education, it becomes extremely critical for a university to build up a teaching and learning quality assurance system to bridge the gap between learning and practice. Teaching and Learning Quality Assurance System has been built and implemented at Chaoyang University of Technology for years and has received substantial results. By employing various forms of evaluation and performance appraisals, the effectiveness of teaching and learning can consistently be tracked as a means of ensuring teaching and learning quality. This study aims to explore the evaluation system of teaching and learning quality assurance system at the Chaoyang University of Technology by means of content analysis. The study contents the evaluation reports on the teaching and learning quality assurance at the Chaoyang University of Technology in the Academic Year 2013-2015. The quantitative results of the assessment were analyzed using the five-point Likert Scale. Quality assurance Committee meetings were further held for examining and discussions on the results. To the end, the annual evaluation report is to be produced as references used to improve approaches in both teaching and learning. The findings indicate that there is a respective relationship between the overall teaching evaluation items and the teaching goals and core competencies. In addition, graduates’ feedbacks were also collected for further analysis to examine if the current educational planning is able to achieve the university’s teaching goal and cultivation of core competencies.

Keywords: core competencies, teaching and learning quality assurance system, teaching goals, university program evaluation

Procedia PDF Downloads 290
12923 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 291
12922 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 67
12921 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria

Authors: Yessica A. Aguilera

Abstract:

English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.

Keywords: collaborative learning, college education, English language learning, team-based learning

Procedia PDF Downloads 189
12920 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia

Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy

Abstract:

Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.

Keywords: e-learning system, gamification, motivation, social comparison, visualization

Procedia PDF Downloads 152
12919 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 408
12918 Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools

Authors: Loke Mun Sei

Abstract:

Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, Robot Framework, and Jenkins.

Keywords: test automation tools, test case, test execution, test reporting

Procedia PDF Downloads 583