Search results for: hydrocarbon solvent
8 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies
Authors: Ariesny Vera, Rodrigo Montecinos
Abstract:
The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.
Procedia PDF Downloads 777 Case Report of a Secretory Carcinoma of the Salivary Gland: Clinical Management Following High-Grade Transformation
Authors: Wissam Saliba, Mandy Nicholson
Abstract:
Secretory carcinoma (SC) is a rare type of salivary gland cancer. It was first realized as a distinct type of malignancy in 2010and wasinitially termed “mammary analogue secretory carcinoma” because of similarities with secretory breast cancer. The name was later changed to SC. Most SCs originate in parotid glands, and most harbour a rare gene mutation: ETV6-NTRK3. This mutation is rare in common cancers and common in rare cancers; it is present in most secretory carcinomas. Disease outcomes for SC are usually described as favourable as many cases of SC are lowgrade (LG), and cancer growth is slow. In early stages, localized therapy is usually indicated (surgery and/or radiation). Despitea favourable prognosis, a sub-set of casescan be much more aggressive.These cases tend to be of high-grade(HG).HG casesare associated with a poorer prognosis.Management of such cases can be challenging due to limited evidence for effective systemic therapy options. This case report describes the clinical management of a 46-year-oldmale patient with a unique case of SC. He was initially diagnosed with a low/intermediate grade carcinoma of the left parotid gland in 2009; he was treated with surgery and adjuvant radiation. Surgical pathology favoured primary salivary adenocarcinoma, and 2 lymph nodes were positive for malignancy. SC was not yet realized as a distinct type of cancerat the time of diagnosis, and the pathology reportvalidated this gap by stating that the specimen lacked features of the defined types of salivary carcinoma.Slow-growing pulmonary nodules were identified in 2017. In 2020, approximately 11 years after the initial diagnosis, the patient presented with malignant pleural effusion. Pathology from a pleural biopsy was consistent with metastatic poorly differentiated cancer of likely parotid origin, likely mammary analogue secretory carcinoma. The specimen was sent for Next Generation Sequencing (NGS); ETV6-NTRK3 gene fusion was confirmed, and systemic therapy was initiated.One cycle ofcarboplatin/paclitaxel was given in June 2020. He was switched to Larotrectinib (NTRK inhibitor (NTRKi)) later that month. Larotrectinib continued for approximately 9 months, with discontinuation in March 2021 due to disease progression. A second-generation NTRKi (Selitrectinib) was accessed and prescribedthrough a single patient study. Selitrectinib was well tolerated. The patient experienced a complete radiological response within~4 months. Disease progression occurred once again in October 2021. Progression was slow, and Selitrectinib continuedwhile the medical team performed a thorough search for additional treatment options. In January 2022, a liver lesion biopsy was performed, and NGS showed an NTRKG623R solvent-front resistance mutation. Various treatment pathways were considered. The patient pursuedanother investigational NTRKi through a clinical trial, and Selitrectinib was discontinued in July 2022. Excellent performance status was maintained throughout the entire course of treatment.It can be concluded that NTRK inhibitors provided satisfactory treatment efficacy and tolerance for this patient with high-grade transformation and NTRK gene fusion cancer. In the future, more clinical research is needed on systemic treatment options for high-grade transformations in NTRK gene fusion SCs.Keywords: secretory carcinoma, high-grade transformations, NTRK gene fusion, NTRK inhibitor
Procedia PDF Downloads 1086 Nanocarriers Made of Amino Acid Based Biodegradable Polymers: Poly(Ester Amide) and Related Cationic and PEGylating Polymers
Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava
Abstract:
Polymeric nanoparticles-based drug delivery systems and therapeutics have a great potential in the treatment of a numerous diseases, due to they are characterizing the flexible properties which is giving possibility to modify their structures with a complex definition over their structures, compositions and properties. Important characteristics of the polymeric nanoparticles (PNPs) used as drug carriers are high particle’s stability, high carrier capacity, feasibility of encapsulation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, including oral application and inhalation; NPs are especially effective for intracellular drug delivery since they penetrate into the cells’ interior though endocytosis. A variety of PNPs based drug delivery systems including charged and neutral, degradable and non-degradable polymers of both natural and synthetic origin have been developed. Among these huge varieties the biodegradable PNPs which can be cleared from the body after the fulfillment of their function could be considered as one of the most promising. For intracellular uptake it is highly desirable to have positively charged PNPs since they can penetrate deep into cell membranes. For long-lasting circulation of PNPs in the body it is important they have so called “stealth coatings” to protect them from the attack of immune system of the organism. One of the effective ways to render the PNPs “invisible” for immune system is their PEGylation which represent the process of pretreatment of polyethylene glycol (PEG) on the surface of PNPs. The present work deals with constructing PNPs from amino acid based biodegradable polymers – regular poly(ester amide) (PEA) composed of sebacic acid, leucine and 1,6-hexandiol (labeled as 8L6), cationic PEA composed of sebacic acid, arginine and 1,6-hexandiol (labeled as 8R6), and comb-like co-PEA composed of sebacic acid, malic acid, leucine and 1,6-hexandiol (labeled as PEG-PEA). The PNPs were fabricated using the polymer deposition/solvent displacement (nanoprecipitation) method. The regular PEA 8L6 form stable negatively charged (zeta-potential within 2-12 mV) PNPs of desired size (within 150-200 nm) in the presence of various surfactants (Tween 20, Tween 80, Brij 010, etc.). Blending the PEAs 8L6 and 8R6 gave the 130-140 nm sized positively charged PNPs having zeta-potential within +20 ÷ +28 mV depending 8L6/8R6 ratio. The PEGylating PEA PEG-PEA was synthesized by interaction of epoxy-co-PEA [8L6]0,5-[tES-L6]0,5 with mPEG-amine-2000 The stable and positively charged PNPs were fabricated using pure PEG-PEA as a surfactant. A firm anchoring of the PEG-PEA with 8L6/8R6 based PNPs (owing to a high afinity of the backbones of all three PEAs) provided good stabilization of the NPs. In vitro biocompatibility study of the new PNPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed they are biocompatible. Considering high stability and cell compatibility of the elaborated PNPs one can conclude that they are promising for subsequent therapeutic applications. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 “New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications”.Keywords: biodegradable poly(ester amide)s, cationic poly(ester amide), pegylating poly(ester amide), nanoparticles
Procedia PDF Downloads 1215 Triple Immunotherapy to Overcome Immune Evasion by Tumors in a Melanoma Mouse Model
Authors: Mary-Ann N. Jallad, Dalal F. Jaber, Alexander M. Abdelnoor
Abstract:
Introduction: Current evidence confirms that both innate and adaptive immune systems are capable of recognizing and abolishing malignant cells. The emergence of cancerous tumors in patients is, therefore, an indication that certain cancer cells can resist elimination by the immune system through a process known as “immune evasion”. In fact, cancer cells often exploit regulatory mechanisms to escape immunity. Such mechanisms normally exist to control the immune responses and prohibit exaggerated or autoimmune reactions. Recently, immunotherapies have shown promising yet limited results. Therefore this study investigates several immunotherapeutic combinations and devises a triple immunotherapy which harnesses the innate and acquired immune responses towards the annihilation of malignant cells through overcoming their ability of immune evasion, consequently hampering malignant progression and eliminating established tumors. The aims of the study are to rule out acute/chronic toxic effects of the proposed treatment combinations, to assess the effect of these combinations on tumor growth and survival rates, and to investigate potential mechanisms underlying the phenotypic results through analyzing serum levels of anti-tumor cytokines, angiogenic factors and tumor progression indicator, and the tumor-infiltrating immune-cells populations. Methodology: For toxicity analysis, cancer-free C57BL/6 mice are randomized into 9 groups: Group 1 untreated, group 2 treated with sterile saline (solvent of used treatments), group 3 treated with Monophosphoryl-lipid-A, group 4 with anti-CTLA4-antibodies, group 5 with 1-Methyl-Tryptophan (Indolamine-Dioxygenase-1 inhibitor), group 6 with both MPLA and anti-CTLA4-antibodies, group 7 with both MPLA and 1-MT, group 8 with both anti-CTLA4-antibodies and 1-MT, and group 9 with all three: MPLA, anti-CTLA4-antibodies and 1-MT. Mice are monitored throughout the treatment period and for three following months. At that point, histological sections from their main organs are assessed. For tumor progression and survival analysis, a murine melanoma model is generated by injecting analogous mice with B16F10 melanoma cells. These mice are segregated into the listed nine groups. Their tumor size and survival are monitored. For a depiction of underlying mechanisms, melanoma-bearing mice from each group are sacrificed at several time-points. Sera are tested to assess the levels of Interleukin-12 (IL-12), Vascular-Endothelial-Growth Factor (VEGF), and S100B. Furthermore, tumors are excised for analysis of infiltrated immune cell populations including T-cells, macrophages, natural killer cells and immune-regulatory cells. Results: Toxicity analysis shows that all treated groups present no signs of neither acute nor chronic toxicity. Their appearance and weights were comparable to those of control groups throughout the treatment period and for the following 3 months. Moreover, histological sections from their hearts, kidneys, lungs, and livers were normal. Work is ongoing for completion of the remaining study aims. Conclusion: Toxicity was the major concern for the success of the proposed comprehensive combinational therapy. Data generated so far ruled out any acute or chronic toxic effects. Consequently, ongoing work is quite promising and may significantly contribute to the development of more effective immunotherapeutic strategies for the treatment of cancer patients.Keywords: cancer immunotherapy, check-point blockade, combination therapy, melanoma
Procedia PDF Downloads 1234 Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery
Authors: Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi
Abstract:
Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239Keywords: self-healing binder, n-type binder, thin solid-electrolyte interphase (SEI), high-capacity silicon anodes, low-LUMO
Procedia PDF Downloads 1723 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries
Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria
Abstract:
Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry
Procedia PDF Downloads 1712 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial
Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava
Abstract:
Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke
Procedia PDF Downloads 3951 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 362