Search results for: H₂-optimal model reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20742

Search results for: H₂-optimal model reduction

19662 Composite Distributed Generation and Transmission Expansion Planning Considering Security

Authors: Amir Lotfi, Seyed Hamid Hosseini

Abstract:

During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.

Keywords: planning, transmission, distributed generation, power security, power systems

Procedia PDF Downloads 480
19661 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 82
19660 Investigation of the Cathodic Behavior of AA2024-T3 in Neutral Medium

Authors: Nisrine Benzbiria, Mohammed Azzi, Mustapha Zertoubi

Abstract:

2XXX series of aluminum alloys are widely employed in several applications, such as beverages, automotive, and aerospace industries. However, they are particularly prone to localized corrosion, such as pitting, often induced by a difference in corrosion potential measured for intermetallic phases and pure metal. The galvanic cells comprising Al–Cu– Mn–Fe intermetallic phases control cathodically the dissolution rate as oxygen reduction reaction kinetics are privileged on Al–Cu–Mn–Fe particles. Hence, understanding the properties of cathode sites and the processes involved must be carried out. Our interest is to outline the cathodic behavior of AA2024-T3 in sodium sulfate solution using electrochemical techniques. Oxygen reduction reaction (ORR) was investigated in the mixed charge transfer and mass transport regime using the Koutecky-Levich approach. An environmentally benign inhibitor was considered to slow the ORR on the Cu-rich cathodic phases. The surface morphology of the electrodes was investigated with SEM/EDS and AFM. The obtained results were discussed accordingly.

Keywords: AA2024-T3, neutral medium, ORR kinetics, Koutecky-Levich, DFT

Procedia PDF Downloads 53
19659 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 148
19658 Social Media Retailing in the Creator Economy

Authors: Julianne Cai, Weili Xue, Yibin Wu

Abstract:

Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.

Keywords: content creation, creator economy, incentive strategy, platform retailing

Procedia PDF Downloads 114
19657 Moving beyond the Social Model of Disability by Engaging in Anti-Oppressive Social Work Practice

Authors: Irene Carter, Roy Hanes, Judy MacDonald

Abstract:

Considering that disability is universal and people with disabilities are part of all societies; that there is a connection between the disabled individual and the societal; and that it is society and social arrangements that disable people with impairments, contemporary disability discourse emphasizes the social model of disability to counter medical and rehabilitative models of disability. However, the social model does not go far enough in addressing the issues of oppression and inclusion. The authors indicate that the social model does not specifically or adequately denote the oppression of persons with disabilities, which is a central component of progressive social work practice with people with disabilities. The social model of disability does not go far enough in deconstructing disability and offering social workers, as well as people with disabilities a way of moving forward in terms of practice anchored in individual, familial and societal change. The social model of disability is expanded by incorporating principles of anti-oppression social work practice. Although the contextual analysis of the social model of disability is an important component there remains a need for social workers to provide service to individuals and their families, which will be illustrated through anti-oppressive practice (AOP). By applying an anti-oppressive model of practice to the above definitions, the authors not only deconstruct disability paradigms but illustrate how AOP offers a framework for social workers to engage with people with disabilities at the individual, familial and community levels of practice, promoting an emancipatory focus in working with people with disabilities. An anti- social- oppression social work model of disability connects the day-to-day hardships of people with disabilities to the direct consequence of oppression in the form of ableism. AOP theory finds many of its basic concepts within social-oppression theory and the social model of disability. It is often the case that practitioners, including social workers and psychologists, define people with disabilities’ as having or being a problem with the focus placed upon adjustment and coping. A case example will be used to illustrate how an AOP paradigm offers social work a more comprehensive and critical analysis and practice model for social work practice with and for people with disabilities than the traditional medical model, rehabilitative and social model approaches.

Keywords: anti-oppressive practice, disability, people with disabilities, social model of disability

Procedia PDF Downloads 1083
19656 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 524
19655 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
19654 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 10
19653 Optimization of the Administration of Intravenous Medication by Reduction of the Residual Volume, Taking User-Friendliness, Cost Efficiency, and Safety into Account

Authors: A. Poukens, I. Sluyts, A. Krings, J. Swartenbroekx, D. Geeroms, J. Poukens

Abstract:

Introduction and Objectives: It has been known for many years that with the administration of intravenous medication, a rather significant part of the planned to be administered infusion solution, the residual volume ( the volume that remains in the IV line and or infusion bag), does not reach the patient and is wasted. This could possibly result in under dosage and diminished therapeutic effect. Despite the important impact on the patient, the reduction of residual volume lacks attention. An optimized and clearly stated protocol concerning the reduction of residual volume in an IV line is necessary for each hospital. As described in my Master’s thesis, acquiring the degree of Master in Hospital Pharmacy, administration of intravenous medication can be optimized by reduction of the residual volume. Herewith effectiveness, user-friendliness, cost efficiency and safety were taken into account. Material and Methods: By usage of a literature study and an online questionnaire sent out to all Flemish hospitals and hospitals in the Netherlands (province Limburg), current flush methods could be mapped out. In laboratory research, possible flush methods aiming to reduce the residual volume were measured. Furthermore, a self-developed experimental method to reduce the residual volume was added to the study. The current flush methods and the self-developed experimental method were compared to each other based on cost efficiency, user-friendliness and safety. Results: There is a major difference between the Flemish and the hospitals in the Netherlands (Province Limburg) concerning the approach and method of flushing IV lines after administration of intravenous medication. The residual volumes were measured and laboratory research showed that if flushing was done minimally 1-time equivalent to the residual volume, 95 percent of glucose would be flushed through. Based on the comparison, it became clear that flushing by use of a pre-filled syringe would be the most cost-efficient, user-friendly and safest method. According to laboratory research, the self-developed experimental method is feasible and has the advantage that the remaining fraction of the medication can be administered to the patient in unchanged concentration without dilution. Furthermore, this technique can be applied regardless of the level of the residual volume. Conclusion and Recommendations: It is recommendable to revise the current infusion systems and flushing methods in most hospitals. Aside from education of the hospital staff and alignment on a uniform substantiated protocol, an optimized and clear policy on the reduction of residual volume is necessary for each hospital. It is recommended to flush all IV lines with rinsing fluid with at least the equivalent volume of the residual volume. Further laboratory and clinical research for the self-developed experimental method are needed before this method can be implemented clinically in a broader setting.

Keywords: intravenous medication, infusion therapy, IV flushing, residual volume

Procedia PDF Downloads 135
19652 The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany

Authors: Jens-Phillip Petersen

Abstract:

The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified.

Keywords: energy planning, urban planning, renewable energies, sustainable cities

Procedia PDF Downloads 351
19651 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
19650 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 184
19649 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 25
19648 Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-Terpyridine

Authors: Angelo Lanzilotto, Martin Kuss-Petermann, Catherine E. Housecroft, Edwin C. Constable, Oliver S. Wenger

Abstract:

We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented.

Keywords: homoleptic complexes, spectroelectrochemistry, tetraphenylporphyrinatozinc(II), 2, 2':6', 6"-terpyridine

Procedia PDF Downloads 220
19647 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
19646 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
19645 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 573
19644 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 377
19643 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 480
19642 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
19641 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 233
19640 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations

Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad

Abstract:

In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).

Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates

Procedia PDF Downloads 219
19639 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
19638 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
19637 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 361
19636 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 325
19635 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product

Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani

Abstract:

Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.

Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability

Procedia PDF Downloads 278
19634 Anti-Inflammatory Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Aicha Kesouri, Ahmed Nouasri, Hafidha Metidji

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The objective of this study is to evaluate the anti-inflammatory of hydromethanolic aerial parts extract of Lavandula antineae for the first time using carrageenan-paw edema and croton oil-ear odema models. The plant extract, at the dose of 200 mg/kg, showed a significant anti-inflammatory activity (P˂0.05) in the carrageenan induced edema test in mice, showing 80.74% reduction in the paw thikness comparable to that produced by the standard drug aspirin 83.44% at 4h. When it was applied topically at a dosage of 1 and 2 mg per ear, the percent edema reduction in treated mice was 29.45% and 74.76%, respectively. These results demonstrate that Lavandula antineae Maire extract possess remarkable anti-inflammatory activity, supporting the folkloric usage of the plant to treat various inflammatory and pain diseases.

Keywords: lavandula antineae maire, medicinal plant, anti-inflammatory activity, carrageenan-paw edema, croton oil-ear edema

Procedia PDF Downloads 390
19633 Foreign Investment, Technological Diffusion and Competiveness of Exports: A Case for Textile Industry in Pakistan

Authors: Syed Toqueer Akhter, Muhammad Awais

Abstract:

Pakistan is a country which is gifted by naturally abundant resources these resources are a pioneer towards a prospect and developed country. Pakistan is the fourth largest exporter of the textile in the world and with the passage of time the competitiveness of these exports is subject to a decline. With a lot of International players in the textile world like China, Bangladesh, India, and Sri Lanka, Pakistan needs to put up a lot of effort to compete with these countries. This research paper would determine the impact of Foreign Direct Investment upon technological diffusion and that how significantly it may be affecting on export performance of the country. It would also demonstrate that with the increase in Foreign Direct Investment, technological diffusion, strong property rights, and using different policy tools, export competitiveness of the country could be improved. The research has been carried out using time series data from 1995 to 2013 and the results have been estimated by using competing Econometrics modes such as Robust regression and Generalized least squares so that to consolidate the impact of the Foreign Investments and Technological diffusion upon export competitiveness comprehensively. Distributed Lag model has also been used to encompass the lagged effect of policy tools variables used by the government. Model estimates entail that 'FDI' and 'Technological Diffusion' do have a significant impact on the competitiveness of the exports of Pakistan. It may also be inferred that competitiveness of Textile Sector requires integrated policy framework, primarily including the reduction in interest rates, providing subsides, and manufacturing of value added products.

Keywords: high technology export, robust regression, patents, technological diffusion, export competitiveness

Procedia PDF Downloads 501