Search results for: primary school children
13 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients
Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen
Abstract:
Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric
Procedia PDF Downloads 9512 Top Skills That Build Cultures at Organizations
Authors: Priyanka Botny Srinath, Alessandro Suglia, Mel McKendrick
Abstract:
Background: Organizational cultural studies integrate sociology and anthropology, portraying man as a creator of symbols, languages, beliefs, and ideologies -essentially, a creator and manager of meaning. In our research, we leverage analytical measures to discern whether an organization embodies a singular culture or a myriad of subcultures. Fast-forward to 2023, our research thesis focuses on digitally measuring culture, coining it as the "Work Culture Quotient." This entails conceptually mapping common experiential patterns to provide executives insights into the digital organization journey, aiding in understanding their current position and identifying future steps. Objectives: Finding the new age skills that help in defining the culture; understand the implications of post-COVID effects; derive a digital framework for measuring skillsets. Method: We conducted two comprehensive Delphi studies to distill essential insights. Delphi 1: Through a thematic analysis of interviews with 20 high-level leaders representing companies across diverse regions -India, Japan, the US, Canada, Morocco, and Uganda- we identified 20 key skills critical for cultivating a robust organizational culture. The skills are -influence, self-confidence, optimism, empathy, leadership, collaboration and cooperation, developing others, commitment, innovativeness, leveraging diversity, change management, team capabilities, self-control, digital communication, emotional awareness, team bonding, communication, problem solving, adaptability, and trustworthiness. Delphi 2: Subject matter experts were asked to complete a questionnaire derived from the thematic analysis in stage 1 to formalise themes and draw consensus amongst experts on the most important workplace skills. Results: The thematic analysis resulted in 20 workplace employee skills being identified. These skills were all included in the Delphi round 2 questionnaire. From the outputs, we analysed the data using R Studio for arriving at agreement and consensus, we also used sum of squares method to compare various agreements to extract various themes with a threshold of 80% agreements. This yielded three themes at over 80% agreement (leadership, collaboration and cooperation, communication) and three further themes at over 60% agreement (commitment, empathy, trustworthiness). From this, we selected five questionnaires to be included in the primary data collection phase, and these will be paired with the digital footprints to provide a workplace culture quotient. Implications: The findings from these studies bear profound implications for decision-makers, revolutionizing their comprehension of organizational culture. Tackling the challenge of mapping the digital organization journey involves innovative methodologies that probe not only external landscapes but also internal cultural dynamics. This holistic approach furnishes decision-makers with a nuanced understanding of their organizational culture and visualizes pivotal skills for employee growth. This clarity enables informed choices resonating with the organization's unique cultural fabric. Anticipated outcomes transcend mere individual cultural measurements, aligning with organizational goals to unveil a comprehensive view of culture, exposing artifacts and depth. Armed with this profound understanding, decision-makers gain tangible evidence for informed decision-making, strategically leveraging cultural strengths to cultivate an environment conducive to growth, innovation, and enduring success, ultimately leading to measurable outcomes.Keywords: leadership, cooperation, collaboration, teamwork, work culture
Procedia PDF Downloads 5311 Developing a Framework for Sustainable Social Housing Delivery in Greater Port Harcourt City Rivers State, Nigeria
Authors: Enwin Anthony Dornubari, Visigah Kpobari Peter
Abstract:
This research has developed a framework for the provision of sustainable and affordable housing to accommodate the low-income population of Greater Port Harcourt City. The objectives of this study among others, were to: examine UN-Habitat guidelines for acceptable and sustainable social housing provision, describe past efforts of the Rivers State Government and the Federal Government of Nigeria to provide housing for the poor in the Greater Port Harcourt City area; obtain a profile of prospective beneficiaries of the social housing proposed by this research as well as perceptions of their present living conditions, and living in the proposed self-sustaining social housing development, based on the initial simulation of the proposal; describe the nature of the framework, guideline and management of the proposed social housing development and explain the modalities for its implementation. The study utilized the mixed methods research approach, aimed at triangulating findings from the quantitative and qualitative paradigms. Opinions of professional of the built environment; Director, Development Control, Greater Port Harcourt City Development Authority; Directors of Ministry of Urban Development and Physical Planning; Housing and Property Development Authority and managers of selected Primary Mortgage Institutions were sought and analyzed. There were four target populations for the study, namely: members of occupational sub-groups for FGDs (Focused Group Discussions); development professionals for KIIs (Key Informant Interviews), household heads in selected communities of GPHC; and relevant public officials for IDI (Individual Depth Interview). Focus Group Discussions (FGDs) were held with members of occupational sub-groups in each of the eight selected communities (Fisherfolk). The table shows that there were forty (40) members across all occupational sub-groups in each selected community, yielding a total of 320 in the eight (8) communities of Mgbundukwu (Mile 2 Diobu), Rumuodomaya, Abara (Etche), Igwuruta-Ali(Ikwerre), Wakama(Ogu-Bolo), Okujagu (Okrika), Akpajo (Eleme), and Okoloma (Oyigbo). For key informant interviews, two (2) members were judgmentally selected from each of the following development professions: urban and regional planners; architects; estate surveyors; land surveyors; quantity surveyors; and engineers. Concerning Population 3-Household Heads in Selected Communities of GPHC, a stratified multi-stage sampling procedure was adopted: Stage 1-Obtaining a 10% (a priori decision) sample of the component communities of GPHC in each stratum. The number in each stratum was rounded to one whole number to ensure representation of each stratum. Stage 2-Obtaining the number of households to be studied after applying the Taro Yamane formula, which aided in determining the appropriate number of cases to be studied at the precision level of 5%. Findings revealed, amongst others, that poor implementation of the UN-Habitat global shelter strategy, lack of stakeholder engagement, inappropriate locations, undue bureaucracy, lack of housing fairness and equity and high cost of land and building materials were the reasons for the failure of past efforts towards social housing provision in the Greater Port Harcourt City area. The study recommended a public-private partnership approach for the implementation and management of the framework. It also recommended a robust and sustained relationship between the management of the framework and the UN-Habitat office and other relevant government agencies responsible for housing development and all investment partners to create trust and efficiency.Keywords: development, framework, low-income, sustainable, social housing
Procedia PDF Downloads 25710 Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence
Authors: Lolwa Alansari, Hanen Mrabet, Kholoud Khaled, Abdelhamid Azhaghdani, Sufia Athar, Aska Kaima, Zaineb Mhamdia, Zubaria Altaf, Almunzer Zakaria, Tamara Alshadafat
Abstract:
Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time.Keywords: overcrowding, waiting time, person centered care, quality initiatives
Procedia PDF Downloads 689 Extracellular Polymeric Substances Study in an MBR System for Fouling Control
Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas
Abstract:
Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS
Procedia PDF Downloads 2708 Selecting High Forage-yielding Alfalfa Populations in a Mediterranean Drought-prone Environment by Using High-throughput Phenotyping
Authors: Hamza Armghan Noushahi, Luis Inostroza, Viviana Barahona, Soledad Espinoza, Carlos Ovalleb, Katherine Quitral, Gustavo A. Lobos, Fernando Guerra, Shawn Kefauver, Alejandro del Pozo
Abstract:
Introduction: One of the primary environmental factors affecting forage crop yield globally is drought, particularly in Mediterranean climatic conditions, where drought typically persists for 5-6 months, usually between October and March in countries like Chile. Alfalfa, a perennial forage crop with deep roots, employs a diverse range of drought-tolerant strategies at the physiological, morphological, and molecular levels. In the current study, 250 alfalfa half-sib populations containing different genetic makeups were grown for three growing seasons (2021 to 2023) to identify drought-resistant populations with high forage yield in two water regimes (irrigated and rainfed) under the Mediterranean drought-prone region of Central Chile, Cauquenes. The objectives were to i) develop new field phenotyping methods using remote sensing technologies such as Red-Green-Blue (RGB) and thermal cameras to identify high-yielding and drought-tolerant alfalfa populations, and ii) select outstanding genetic material for plant breeding. Material And Methods: Field phenotyping involves using remote sensing technology, including RGB and thermal cameras mounted on unmanned aerial vehicles, and measuring the forage yield of 250 alfalfa half-sib populations grown under rainfed and irrigated water regimes in a Mediterranean drought-prone environment, during three growing seasons (2021-2023). Both trials were arranged in an α-lattice experimental design with two replications. Each replicate has 10 partial blocks including 25 half-sib populations. RGB-derived indices and canopy temperature difference (CTD), determined by subtracting the canopy temperature (Tc) from the ambient temperature (Ta), were related with forage yield. Results And Discussion: Results indicate that forage yield exhibited significant variability among the alfalfa populations, in both rainfed and irrigated conditions. During winter, it ranged from 1.4- to 6.1 Mg ha-1 in rainfed conditions and from 1.4 to 8.2 Mg ha-1 under the irrigated regime. Total forage yield ranged from 3.7 to 14.7 Mg ha-1 in rainfed conditions and from 6.3 to 25.1 Mg ha-1 in the irrigated regime. Among half-sib populations, the most productive populations were AlfaL4-5 (parent SARDI7), AlfaL57-7 (parent WL903), and AlfaL62-9 (parent Baldrich350), which produced the highest (>13 Mg ha-1 mean total FY and > 4.5 Mg ha-1 mean winter FY during 2021-2023) forage yield in both water regimes. RGB indices Hue, Saturation, b*, v*, GA, and GGA exhibited positive correlations, whereas Intensity, Lightness, a*, and u* showed negative correlations with forage yield in both water regimes. In 2021, RGB-derived indices showed a weak correlation (r < 0.5) with CTD. However, strong correlations were observed in November 2022 (r = -0.8 to +0.8) and 2023 (r = -0.7 to +0.7), specifically in the irrigated regime, indicating better performance under higher water availability. Moreover, the CTD was negatively correlated with FY (r = -0.28 for rainfed and -0.32 for irrigated in 2021, r = -0.57 for rainfed and r = -0.76 for irrigated in 2022, and r = -0.34 for rainfed and r = -0.52 for irrigated in 2023) of 250 alfalfa half-sib populations. It is concluded that CTD and RGB-derived indices were the most effective tools for identifying drought-resistant populations grown in Mediterranean drought-prone environments. In rainfed alfalfa, the most highly productive populations were AlfaL29-4 (parent AS3), AlfaL61-9 (parent Genesis), and AlfaL4-7 (parent SARDI7). Meanwhile, in irrigated conditions, the alfalfa half-sib populations AlfaL56-4 (parent Venus) and AlfaL57-2 (parent WL903) demonstrated maximum FY. Conclusion: Alfalfa winter and total FY varied widely between the three growing seasons (2021-2023) under two water regimes, rainfed and irrigated. There were three alfalfa half-sib populations, AlfaL4-5 (parent SARDI7), AlfaL57-7 (parent WL903) and AlfaL62-9 (parent Baldrich350), that exhibited high FY in both water regimes, rainfed and irrigated. The thermal camera derived index CTD (Tc-Ta) showed negative correlation with FY and appeared to be the most powerful tool in identification of alfalfa genotypes grown under Chilean Mediterranean drought prone environment.Keywords: alfalfa, remote sensing, phenotyping, forage crop
Procedia PDF Downloads 97 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water
Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard
Abstract:
Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment
Procedia PDF Downloads 1266 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 1765 Employee Engagement
Authors: Jai Bakliya, Palak Dhamecha
Abstract:
Today customer satisfaction is given utmost priority be it any industry. But when it comes to hospitality industry this applies even more as they come in direct contact with customers while providing them services. Employee engagement is new concept adopted by Human Resource Department which impacts customer satisfactions. To satisfy your customers, it is necessary to see that the employees in the organisation are satisfied and engaged enough in their work that they meet the company’s expectations and contribute in the process of achieving company’s goals and objectives. After all employees is human capital of the organisation. Employee engagement has become a top business priority for every organisation. In this fast moving economy, business leaders know that having a potential and high-performing human resource is important for growth and survival. They recognize that a highly engaged manpower can increase innovation, productivity, and performance, while reducing costs related to retention and hiring in highly competitive talent markets. But while most executives see a clear need to improve employee engagement, many have yet to develop tangible ways to measure and tackle this goal. Employee Engagement is an approach which is applied to establish an emotional connection between an employee and the organisation which ensures the employee’s commitment towards his work which affects the productivity and overall performance of the organisation. The study was conducted in hospitality industry. A popular branded hotel was chosen as a sample unit. Data were collected, both qualitative and quantitative from respondents. It is found that employee engagement level of the organisation (Hotel) is quite low. This means that employees are not emotionally connected with the organisation which may in turn, affect performance of the employees it is important to note that in hospitality industry individual employee’s performance specifically in terms of emotional engagement is critical and, therefore, a low engagement level may contribute to low organisation performance. An attempt to this study was made to identify employee engagement level. Another objective to take this study was to explore the factors impeding employee engagement and to explore employee engagement facilitation. While in the hospitality industry where people tend to work for as long as 16 to 18 hours concepts like employee engagement is essential. Because employees get tired of their routine job and in case where job rotation cannot be done employee engagement acts as a solution. The study was conducted at Trident Hotel, Udaipur. It was conducted on the sample size of 30 in-house employees from 6 different departments. The various departments were: Accounts and General, Front Office, Food & Beverage Service, Housekeeping, Food & Beverage Production and Engineering. It was conducted with the help of research instrument. The research instrument was Questionnaire. Data collection source was primary source. Trident Udaipur is one of the busiest hotels in Udaipur. The occupancy rate of the guest over there is nearly 80%. Due the high occupancy rate employees or staff of the hotel used to remain very busy and occupied all the time in their work. They worked for their remuneration only. As a result, they do not have any encouragement for their work nor they are interested in going an extra mile for the organisation. The study result shows working environment factors including recognition and appreciation, opinions of the employee, counselling, feedback from superiors, treatment of managers and respect from the organisation are capable of increasing employee engagement level in the hotel. The above study result encouraged us to explore the factors contributed to low employee engagement. It is being found that factors such as recognition and appreciation, feedback from supervisors, opinion of the employee, counselling, feedback from supervisors, treatment from managers has contributed negatively to employee engagement level. Probable reasons for the low contribution are number of employees gave the negative feedback in accordance to the factors stated above of the organisation. It seems that the structure of organisation itself is responsible for the low contribution of employee engagement. The scope of this study is limited to trident hotel situated in the Udaipur. The limitation of the study was that that the results or findings were only based on the responses of respondents of Trident, Udaipur. And so the recommendations were also applicable in Trident, Udaipur and not to all the like organisations across the country. Through the data collected was further analysed, interpreted and concluded. On the basis of the findings, suggestions were provided to the hotel for improvisation.Keywords: human resource, employee engagement, research, study
Procedia PDF Downloads 3104 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 113 Knowledge of the Doctors Regarding International Patient Safety Goal
Authors: Fatima Saeed, Abdullah Mudassar
Abstract:
Introduction: Patient safety remains a global priority in the ever-evolving healthcare landscape. At the forefront of this endeavor are the International Patient Safety Goals (IPSGs), a standardized framework designed to mitigate risks and elevate the quality of care. Doctors, positioned as primary caregivers, wield a pivotal role in upholding and adhering to IPSGs, underscoring the critical significance of their knowledge and understanding of these goals. This research embarks on a comprehensive exploration into the depth of Doctors ' comprehension of IPSGs, aiming to unearth potential gaps and provide insights for targeted educational interventions. Established by influential healthcare bodies, including the World Health Organization (WHO), IPSGs represent a universally applicable set of objectives spanning crucial domains such as medication safety, infection control, surgical site safety, and patient identification. Adherence to these goals has exhibited substantial reductions in adverse events, fostering an overall enhancement in the quality of care. This study operates on the fundamental premise that an informed Doctors workforce is indispensable for effectively implementing IPSGs. A nuanced understanding of these goals empowers Doctors to identify potential risks, advocate for necessary changes, and actively contribute to a safety-centric culture within healthcare institutions. Despite the acknowledged importance of IPSGs, there is a growing concern that nurses may need more knowledge to integrate these goals into their practice seamlessly. Methodology: A Comprehensive research methodology covering study design, setting, duration, sample size determination, sampling technique, and data analysis. It introduces the philosophical framework guiding the research and details material, methods, and the analysis framework. The descriptive quantitative cross-sectional study in teaching care hospitals utilized convenient sampling over six months. Data collection involved written informed consent and questionnaires, analyzed with SPSS version 23, presenting results graphically and descriptively. The chapter ensures a clear understanding of the study's design, execution, and analytical processes. Result: The survey results reveal a substantial distribution across hospitals, with 34.52% in MTIKTH and 65.48% in HMC MTI. There is a notable prevalence of patient safety incidents, emphasizing the significance of adherence to IPSGs. Positive trends are observed, including 77.0% affirming the "time-out" procedure, 81.6% acknowledging effective healthcare provider communication, and high recognition (82.7%) of the purpose of IPSGs to improve patient safety. While the survey reflects a good understanding of IPSGs, areas for improvement are identified, suggesting opportunities for targeted interventions. Discussion: The study underscores the need for tailored care approaches and highlights the bio-socio-cultural context of 'contagion,' suggesting areas for further research amid antimicrobial resistance. Shifting the focus to patient safety practices, the survey chapter provides a detailed overview of results, emphasizing workplace distribution, patient safety incidents, and positive reflections on IPSGs. The findings indicate a positive trend in patient safety practices with areas for improvement, emphasizing the ongoing need for reinforcing safety protocols and cultivating a safety-centric culture in healthcare. Conclusion: In summary, the survey indicates a positive trend in patient safety practices with a good understanding of IPSGs among participants. However, identifying areas for potential improvement suggests opportunities for targeted interventions to enhance patient safety further. Ongoing efforts to reinforce adherence to safety protocols, address identified gaps, and foster a safety culture will contribute to continuous improvements in patient care and outcomes.Keywords: infection control, international patient safety, patient safety practices, proper medication
Procedia PDF Downloads 562 Open Science Philosophy, Research and Innovation
Authors: C.Ardil
Abstract:
Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data
Procedia PDF Downloads 1361 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 133